

Pomoc do HL++ v.2.4

2

Spis treści

1 Spis funkcji HL++ ... 4

1.1 Funkcje elementarne (elfun) ... 4

1.2 Tekst (text) ... 7

1.3 Data (date) ... 13

1.4 Wektor (vector) ... 16

1.5 Dane (data) .. 19

1.5.1 Deklaracja zmiennej ... 19

1.5.2 Wymiary obiektu .. 19

1.5.3 Dostęp do obiektu .. 20

1.5.4 Wyszukiwanie ... 21

1.5.5 Zmiana rozmiaru i kształtu ... 22

1.5.6 Sprawdzanie zawartości ... 23

1.5.7 Tworzenie wektorów .. 23

1.5.8 Zmiana zawartości .. 25

1.5.9 Kopiowanie ... 26

1.5.10 Wybieranie i wstawianie .. 27

1.5.11 Łączenie .. 29

1.5.12 Operacje zmiany orientacji ... 30

1.5.13 Zamiana wierszy, kolumn ... 31

1.5.14 Pozostawianie wybranych wierszy, kolumn ... 32

1.5.15 Operatory ... 33

1.5.16 Sortowanie ... 34

1.5.17 Operacje na zbiorach .. 35

1.5.18 Operacje plikowe .. 36

1.5.19 Wyświetlanie, kasowanie ... 37

1.6 Macierz (matrix) .. 38

1.6.1 Deklaracja zmiennej ... 38

1.6.2 Konwersja ... 38

1.6.3 Tworzenie ... 39

3

1.6.4 Wypełnianie .. 41

1.6.5 Podstawowe operacje .. 41

1.6.6 Operacje statystyczne .. 43

1.6.7 Ogólne podsumowanie .. 44

1.6.8 Operacje dwuargumentowe ... 44

1.6.9 Operatory ... 45

1.6.10 Algebra liniowa ... 50

1.6.11 Regresja liniowa i inne metody numeryczne.. 51

1.6.12 Operacje na plikach binarnych ... 51

1.7 Tabela (table) ... 53

1.7.1 Deklaracja zmiennej ... 53

1.7.2 Konwersja ... 53

1.7.3 Wybór etykiet ... 53

1.7.4 Tabela testowa ... 54

1.7.5 Operacje wyboru i faktorowe ... 54

1.7.6 Sortowanie ... 56

1.7.7 Tworzenie bazy do modelowania ... 56

1.8 Macierz rzadka (sparse) ... 58

1.9 Metody numeryczne (numproc) .. 67

1.10 Sieć neuronowa (neural_net) .. 71

1.11 Wykres (gplot) ... 78

1.12 Raport HTML (html) ... 83

1.13 Symulacje i kwantyle (simulation, quantiles) .. 87

1.14 Język R (rrun, rcppconv) ... 91

4

 1 Spis funkcji HL++

 1.1 Funkcje elementarne (elfun)

Metoda Deklaracja metody Przykład wywołania Opis działania

Wartość bezwzględna double dabs(double x) dabs(-2.5) Wartość bezwzględna liczby

Prawie zero double nzero(double x) nzero(0.0) Zwraca EPS (1e-9), jeśli argument wynosi 0. W innych przypadkach zwraca 'x'.

W przykładzie wynikiem jest 1e-9.

Praktycznie zero int praczero(double x) praczero(1e-30) Zwraca 1 (true), jeśli argument jest nie większy od PREC (1e-15). W innych przypadkach zwraca 0 (false).

Praktycznie nie zero int notzero(double x) notzero(1e-30) Zwraca negację praczero(x)

Praktycznie równe int praceql(double x,double

y)

praceql(1.0,1.01) Porównuje 'x' i 'y' z dokładnością PREC (1e-15)

Praktycznie różne int noteql(double x,double

y)

noteql(1.0,1.01) Zwraca negację praceql(x,y)

Znak liczby double sign(double x) sign(10.0) Znak liczby

Maksimum double max(double x,double max(4,5) Większa z liczb

5

y)

int max(int x,int y)

Minimum double min(double x,double

y)

int min(int x,int y)

min(4,5) Mniejsza z liczb

Kwadrat liczby double sqr(double x) sqr(2.0) Kwadrat liczby

Potęga całkowita double powi(double x,int e) powi(3.2,5) Potęga całkowita liczby rzeczywistej

Liczba losowa double rnd() rnd() Liczba losowa z rozkładu jednostajnego z przedziału domkniętego [0,1]

Liczba losowa 2 double rnd2() rnd2() Liczba losowa z rozkładu jednostajnego z przedziału otwartego (0,1)

Zaokrąglenie double round(double x)

double round(double x,int

prec)

round(2.8) Zaokrąglenie liczby. Można określić liczbę cyfr po przecinku ('prec'), które będą zaokrąglone

Czy całkowita int is_int(double x) is_int(8.5) Zwraca 1 (true), jeśli 'x' jest całkowita. W przeciwnym przypadku 0 (false)

Arcus tangens

hiperboliczny i jego

pochodna

double atanh(double x)

double dtanh(double x)

atanh(0.1) Arcus tangens hiperboliczny.

Pochodna arcus tangensa hiperbolicznego.

Secans hiperboliczny i

jego pochodna

double sech(double x)

double dsech(double x)

sech(0.1) Secans hiperboliczny.

Pochodna secansa hiperbolicznego.

6

Logit double logit(double x) logit(0.2)
Funkcja logit:

1

1+e
x

Efektywność double effic(double x,double

y)

effic(8,11) Funkcja efektywności: dla nieujemnych argumentów zwracana jest średnia geometryczna, w innych

przypadkach 0

Erf – funkcja błędu

Gaussa

double erf(double x) erf(0.0) Funkcja błędu Gaussa

Φ – gęstość rozkładu

normalnego

double phi(double x) phi(1.5) Gęstość rozkładu normalnego o średniej 1 i wariancji 1

7

 1.2 Tekst (text)

Metoda Deklaracja metody Przykład wywołania Opis działania

Deklaracja zmiennej

tekstowej

Text() Text t Deklarowana jest zmienna typu tekstowego

Tworzenie tekstu na

podstawie ciągu znaków

Text(const char *str) Text t("jakiś napis") Tworzony jest tekst zdefiniowany ciągiem znaków

Tworzenie tekstu

jednoznakowego

Text(char c) Text t(‘a’) Tworzony jest tekst złożony z jednego znaku.

W tym przykładzie będzie to "a".

Tworzenie tekstu

odpowiadającego liczbie

całkowitej

Text(int i) Text t(2) Tworzony jest tekst na podstawie liczby całkowitej.

W tym przypadku będzie to "2".

Tworzenie tekstu

odpowiadającego liczbie

rzeczywistej

Text(double d) Text t(3.95) Tworzony jest tekst na podstawie liczby rzeczywistej.

W tym przypadku będzie to "3.95".

Lorem ipsum Text lorem_ipsum(int

rep=1)

lorem_ipsum() Funkcja zwraca demonstracyjny tekst „Lorem ipsum”. Parametr rep określa liczbę powtórzeń tekstu
(domyślnie 1).

Podstawowe konwersje

Konwersja na ciąg

znaków

operator char * () (char*)(t) Tekst jest konwertowany na ciąg znaków

Konwersja na double operator double() double(t) Tekst jest konwertowany n a liczbę typu double

8

Konwersja na string string as_string(Text t) as_string(t) Tekst jest konwertowany na string.

Dostęp do znaków

Długość int len(const Text &t) len(t) Zwraca długość tekstu

Znak char & operator()(int n) t(5) Zwraca znak występujący w tekście na pozycji ‘n’.

Operatory

Operatory porównania int operator ==(const Text

&t1,const Text &t2)

int operator <(const Text

&t1,const Text &t2)

itd.

t1 == t2

t1 < t2

"dwa" == "dwa"

Dwa teksty są porównywane znak po znaku. Dostępne są wszystkie operatory (==,!=,<,>,<=,>=).

Scalanie Text operator +(const Text

&,const Text &)

t1 + t2

"dwa"+"naście"

Dwa teksty są scalane. W wyniku uzyskuje się ciąg znaków pierwszego i drugiego napisu, ustawione jeden za
drugim.

W drugim przykładzie otrzymamy słowo "dwanaście".

Scalanie przyrostowe void operator +=(const

Text &t)

t1 += t2 Analogicznie jak +, ale przyrostowo.

Zastępowanie znaków

Zamiana znaku Text replace(const Text

&t,char c1,char c2)

replace("aut",’a’,’b’) Zwracany jest tekst, w którym znak c1 jest zastąpiony znakiem c2.

W tym przypadku zwrócone zostanie słowo „but”.

Zamiana kropek na

przecinki

Text dot2com(const Text

&t)

dot2com("3.22") Zwracany jest tekst, w którym kropki (‘.’) są zamienione na przecinki (‘,’).

W tym przypadku zwrócone będzie "3,22".

Zamiana przecinków na Text com2dot(const Text com2dot("3,22") Zwracany jest tekst, w którym przecinki (‘,’) są zamienione na kropki (‘.’).

9

kropki &t) W tym przypadku zwrócone będzie "3.22".

Zamiana na wielkie

litery

Text to_upper(const Text

&t)

to_upper("Kowalski") Litery w tekście są zamieniane na wielkie.

W tym przykładzie wynikiem będzie „KOWALSKI”.

Zamiana na małe litery Text to_lower(const Text

&t)

to_lower("Nowak") Litery w tekście są zamieniane na małe.

W tym przykładzie wynikiem będzie „nowak”.

Usuwanie polskich

znaków z tekstu

Text remove_pl(const Text

&t)

remove_pl(„rękodzieło

”)

Polskie litery w tekście są zamieniane na litery łacińskie.

W tym przykładzie wynikiem będzie „rekodzielo”.

Zmiana formatowania

znaków z ISO 8859-2 na

Windows-1250

Text to_win1250(const

Text &)

to_win1250(„tekst”) Polskie litery zakodowanie zestawem wschodnioeuropiejskim Latin2 są zamieniane na zakodowane

zestawem obowiązującym w systemie Windows PL.

Zmiana formatowania

znaków z ISO 8859-2 na

UTF-8

Text to_utf8(const Text &) to_utf8(„tekst”) Polskie litery zakodowanie zestawem wschodnioeuropiejskim Latin2 są zamieniane na zakodowane

zestawem UTF-8 (wykorzystywanym m.in. w systemie Linux).

Wybieranie fragmentów

Fragment początkowy Text part(const Text &t,int

l)

part("dwanaście",3) Zwraca tekst składający się z ‘l’ początkowych znaków tekstu ‘t’.

W tym przypadku wynikiem będzie "dwa".

Fragment Text subtext(const Text

&t,int f,int l)

subtext("dwanaście",2,

3)

Zwraca tekst składający się z ‘l’ znaków tekstu ‘t’, zaczynających się od znaku o numerze ‘f’.

W tym przypadku wynikiem będzie "wan".

Fragment końcowy Text endtext(const Text

&t,int f)

endtext("dwanaście",4

)

Zwraca tekst składający się z końcowych znaków tekstu ‘t’, zaczynający się od znaku o numerze ‘f’.

W tym przypadku wynikiem będzie "naście".

Konwersje numeryczne, formatowanie

10

Zamiana liczby

całkowitej na tekst

Text itot(int i)

Text ltot(long l)

Itot(12)

ltot(1234567890)

Zwracany jest tekst odpowiadający danej liczbie całkowitej. Funkcja itot konwertuje liczby typu int, a funkcja
ltot konwertuje liczby typu long int.

W pierwszym przykładzie zwracany jest tekst "12", w drugim „1234567890”.

Zamiana liczby

rzeczywistej na tekst

Text dtot(double d,int l=0)

Text dtotl(double d)

Text dtots(double d)

dtot(3.95)

dtot(3.95, 4)

dtotl(3.95)

dtots(3.95)

Zwracany jest tekst odpowiadający danej liczbie rzeczywistej. Parametr ‘l’ określa liczbę miejsc dziesiętnych,
które zostaną zachowane. Dla l=0 konwersja zachowa 6 cyfr po przecinku.

Wersja dtotl (long) zachowuje 12 cyfr po przecinku.

Wersja dtots (short) zachowuje 2 cyfr po przecinku.

Zamiana liczby

całkowitej na tekst i

formatowanie w %

Text fperc(double d,int

l=2)

Text fperc2(double d,int

l=2)

fperc(0.12)

fperc2(0.12)

Zwracany jest tekst odpowiadający danej liczbie rzeczywistej, sformatowany w procentach z dokładnością do
'l' miejsc po przecinku (domyślnie dwóch) i zakończony znakiem %.

Funkcja fperc2 zwraca tekst zakończony dwoma znakami %.

W pierwszym przypadku wynikiem jest "12.00%". W drugim "12.00%%".

Zamiana tekstu na

liczbę całkowitą

int ttoi(const Text &t) ttoi("3") Zwraca liczbę całkowitą odpowiadającą danemu tekstowi.

Zamiana tekstu na

liczbę rzeczywistą

double ttod(const Text &t) ttod("6.5") Zwraca liczbę rzeczywistą odpowiadającą danemu tekstowi.

Ujęcie w cudzysłów Text quote(const Text &t) quote("abc") Zwraca dany tekst ujęty w cudzysłów.

W tym przypadku ""abc""

Sprawdzanie rodzaju

Czy data int isdate(const Text &t) isdate("2012-01-01") Sprawdzenie czy tekst reprezentuje datę. Zwracane jest 1 (true) lub 0 (false).

Czy liczba int numerical(const Text

&t)

numerical("250.5")

numerical("2.505e2")

Sprawdzenie czy tekst reprezentuje liczbę. Zwracane jest 1 (true) lub 0 (false).

11

Wyszukiwanie fragmentów i zastępowanie

Sprawdzenie

wystąpienia

int exist(char c)

int exist(const Text &t)

t.exist(‘a’)

t.exist("kot")

Sprawdzenie czy w tekście występuje dana litera lub dany fragment. Zwraca 1 (true) lub 0 (false).

Pierwsza pozycja

wystąpienia

int firstpos(char c)

int firstpos(const Text &t)

t.firstpos(‘a’)

t. firstpos ("kot")

Pierwsza pozycja, na której w tekście występuje dana litera lub dany fragment. Zwraca pozycję lub -1, gdy nie
znaleziono.

Ostatnia pozycja

wystąpienia

int lastpos(char c)

int lastpos(const Text &t)

t.lastpos(‘a’)

t. lastpos ("kot")

Ostatnia pozycja, na której w tekście występuje dana litera lub dany fragment. Zwraca pozycję lub -1, gdy nie
znaleziono.

Pozycja n-tego

wystąpienia znaku
int nthpos(char,int) t.nthpos('a',6) Pozycja n-tego wystąpienia znaku w tekście. Zwraca pozycję lub -1, gdy nie znaleziono.

Zastępowanie tekstu Text replace(const Text

&t,const Text &in,const

Text &out)

replace(t,"kot","pies") W tekście t ciąg znaków wejściowy ‘in’ jest zastępowany ciągiem wyjściowym ‘out’. Gdy ‘in’
występuje więcej niż raz, to zastępowanie dotyczy wszystkich wystąpień.

W przykładzie słowo ‘kot’ jest zastępowane słowem ‘pies’.

Operacje wejścia/wyjścia

Wyświetlenie ostream & operator

<<(ostream &out,const

Text &t)

cout<<t Wyświetlenie tekstu

Pobranie istream & operator

>>(istream &in,Text &t)

cin>>t Pobranie tekstu wpisywanego z klawiatury

Odczyt / zapis do pliku void read(FILE *file)

void write(FILE *file)

t.read(file)

t.write(file)

Odczyt/zapis tekstu do pliku typu FILE.

Wczytanie treści z pliku void read_file(const char t.read_file(„dane.txt”) Wczytanie do zmiennej tekstowej treści z pliku o danej nazwie.

12

o danej nazwie *name)

Wczytanie treści z pliku

do stringa
string read_file(const

char *name)

read_file(„dane.txt”) Wczytanie do stringa treści z pliku o danej nazwie.

13

 1.3 Data (date)

Metoda Deklaracja metody Przykład wywołania Opis działania

Deklaracja daty date() date da Deklarowana jest zmienna typu data

Tworzenie daty na

podstawie napisu

date(const char *str)

date(const Text t)

date da("2014-12-06") Tworzona jest zmienna data na podstawie napisu

Tworzenie daty na

podstawie składowych

rok, miesiąc i dzień

date(long y,long m,long d) date da(2014,12,6) Tworzona jest zmienna data na podstawie składowych rok, miesiąc i dzień

Tworzenie daty

Zamiana napisu w datę date d(const char *str) date da = d("2014-12-

06")

Zwraca datę utworzoną na podstawie napisu

Dzisiaj date today() date da = today() Zwraca bieżącą datę

Pierwszy dzień miesiąca date ymfirst(const date

&t)

ymfirst(d("2014-12-

06"))

Zwraca pierwszy dzień miesiąca, w którym występuje data ‘t’.

W tym przypadku 2014-12-1

Ostatni dzień miesiąca date ymlast(const date

&t)

ymlast(d("2014-12-

06"))

Zwraca ostatni dzień miesiąca, w którym występuje data ‘t’.

W tym przypadku 2014-12-31

Konwersja

Konwersja daty na

liczbę

operator double() double(d("2014-12-

06"))

Konwertuje datę na liczbę rzeczywistą. Zachowywany jest rok (jako części całkowite) i miesiąc (na miejscach
dziesiętnych). Dzień miesiąca jest ignorowany.

W tym przykładzie zwracana jest liczba 2014.12.

14

Konwersja liczby na

datę

date dtoda(double d) date

da=dtoda(2014.12)

Liczba rzeczywista jest zamieniana na datę. Liczba rzeczywista musi zawierać rok (jako części całkowite) i
miesiąc (na miejscach dziesiętnych).

W przykładzie liczba 2014.12 jest zamieniana na datę 2014-12-1

Konwersja daty na tekst Text datot(const date

&da)

datot(d("2014-12-06")) Konwertuje datę na tekst.

W tym przykładzie zwracany jest tekst "2014-12-06".

Składowe daty

Dzień long day(const date &da) day(d("2014-12-06")) Zwraca dzień dla podanej daty.

W tym przypadku 6

Miesiąc long month(const date

&da)

month(d("2014-12-

06"))

Zwraca miesiąc dla podanej daty.

W tym przypadku 12

Rok long year(const date &da) year(d("2014-12-06")) Zwraca rok dla podanej daty.

W tym przypadku 2014

Składowe rok, miesiąc,

dzień

void ymd(long &y,long

&m,long &d)

da.ymd(y,m,d) Rozkłada datę na składowe rok (y), miesiąc (m) i dzień (d).

Przesuwanie dat

Zwiększenie o liczbę

dni

date operator +(const

date &da,const long l)

d("2014-12-06")+40 Zwiększa datę o ‘l’ dni.

W tym przypadku wynikiem jest 2015-01-15

Zmniejszenie o liczbę

dni

date operator -(const date

&da,const long l)

d("2014-12-06")-40 Zmniejsza datę o ‘l’ dni.

W tym przypadku wynikiem jest 2014-10-27

Modyfikacja o liczbę dni date dmod(const date

&da,const long l)

dmod(d("2014-12-

06"),-40)

Modyfikuje datę o ‘l’ dni. ‘l’ dodatnie powoduje zwiększenie, a ‘l’ ujemne zmniejszenie daty.

W tym przypadku wynikiem jest 2014-10-27

15

Modyfikacja o liczbę

miesięcy

date mmod(const date

&da,const long l)

mmod(d("2014-12-

06"),2)

Modyfikuje datę o ‘l’ miesięcy. ‘l’ dodatnie powoduje zwiększenie, a ‘l’ ujemne zmniejszenie daty. Jeśli data
‘da’ jest z końca miesiąca (np. 31), to po przesunięciu dzień jest zmiejszany (np. na 30), po to, by data
wynikowa była poprawną datą.

W tym przypadku wynikiem jest 2015-2-6

Modyfikacja o liczbę lat date ymod(const date

&da,const long l)

ymod(d("2014-12-

06"),-2)

Modyfikuje datę o ‘l’ lat. ‘l’ dodatnie powoduje zwiększenie, a ‘l’ ujemne zmniejszenie daty.

W tym przypadku wynikiem jest 2012-12-6

Różnica i porównywanie dat

Różnica long operator -(const date

&da1,const date &da2)

d("2014-12-26")-

d("2012-12-06")

Obliczana jest różnica między datami (wyrażona w dniach).

W tym przypadku różnica wynosi 750 dni.

Porównywanie int operator ==(const date

&da1,const date &da2)

int operator <(const date

&da1,const date &da2)

itd.

d("2014-12-26") ==

d("2012-12-06")

d("2014-12-26") <

d("2012-12-06")

Daty są porównywane z dokładnością do dnia. Dostępne są wszystkie operatory (==,!=,<,>,<=,>=).

Obsługa strumieni

Wyświetlenie ostream & operator

<<(ostream &out,const

date &da)

cout<<d("2014-12-06") Wyświetlenie daty

Pobranie istream & operator

>>(istream &in,date &da)

cin>>da Pobranie daty wpisywanej z klawiatury. Oczekiwany jest format yyyy-mm-dd. Separatorem może też być
kropka lub /.

16

 1.4 Wektor (vector)

Metoda Deklaracja metody Przykład wywołania Opis działania

Utworzenie wektora vector() vector v Tworzony jest pusty wektor v

Utworzenie wektora

danej długości

vector(int n_new) vector v(5) Tworzony jest wektor v o długości 5

Dostęp do elementów

Długość wektora int length(const vector

&v)

length(v) Zwracana jest długość wektora

Element wektora int & operator ()(int i) v(3) Dostęp do 3 elementu wektora v

Tworzenie wektorów

Wektor stałych vector c(int c1,int c2,int

c3,int c4,int c5,int c6,int

c7,int c8,int c9,int c10)

c(2,4,8) Powstaje wektor o wartościach podanych jako argumenty. W ten sposób można tworzyć wektory o długości

do 10. Dłuższe wektory uzyskuje się funkcją 'vi'. W tym przypadku powstaje wektor o elementach [2,4,8].

Wektor stałych danej

długości

vector vi(int l,...) vi(3,2,4,8) Powstaje wektor o długości 'l' i wartościach podanych jako kolejne argumenty. W tym przypadku wektor o

długości 3 i elementach [2,4,8]

Sekwencja liczb od 1 vector $(int b) $(10) Powstaje sekwencja liczb od 1 do b. W tym przypadku [1,2,3,4,5,6,7,8,9,10]

Sekwencja liczb vector $(int a,int b) $(3,8) Powstaje sekwencja liczb od a do b. W tym przypadku [3,4,5,6,7,8]

Sekwencja ze skokiem vector $(int a,int step,int

b)

$(1,2,9) Powstaje sekwencja liczb od a do b, krokiem ‘step’. W tym przypadku [1,3,5,7,9]

Wypełnianie stałą void fill(int c) v.fill(8) Wypełnianie wektora stałą. W tym przypadku wektor v zostaje wypełniony wartościami 8

17

Wektor stałych vector filled(int c,int l) filled(8,5) Powstaje wektor o długości ‘l’, wypełniony stałą ‘c’. W tym przypadku [8,8,8,8,8]

Wektor zer vector vzeros(int l) vzeros(5) Powstaje wektor o długości ‘l’, wypełniony zerami. W tym przypadku [0,0,0,0,0]

Wektor jedynek vector vones(int l) vones(5) Powstaje wektor o długości ‘l’, wypełniony jedynkami. W tym przypadku [1,1,1,1,1]

Funkcje specjalne

Suma wartości int sum(const vector &v) sum(v) Suma elementów wektora

Wyszukanie pozycji

niezerowych

vector find(const vector

&v)

find(v) Wyszukuje pozycje, na których w wektorze są wartości różne od 0. Wynikiem jest wektor indeksów, np.

v=c(2,0,8)

v2=find(v)

v to wektor [2,0,8]. Wówczas v2 to wektor [1,3]

Indeks przeciwny do

danego indeksu

vector nindex(const vector

&v,int nl)

nindex(v,15) Tworzy wektor indeksów przeciwnych do danego, z zakresu od 1 do nl. Np.

v=c(-1,-3,-5,-7,-9)

v2=nindex(v,15)

v to wektor [-1,-3,-5,-7,-9]. Wówczas v2 to wektor [2,4,6,8,10,11,12,13,14,15]

Zmiana długości void resize(int n_new) v.resize(10) Zmiana długości wektora.

Zwolnienie pamięci void free() v.free() Zwolnienie pamięci przydzielonej dla wektora.

Operacja zmiany znaku Vector operator -(const

Vector &)

-v Zmiana znaku elementów wektora na przeciwny.

Operatory logiczne

Zaprzeczenie vector operator !(const

vector &v)

!v Zaprzeczenie elementów wektora. Zera zamieniane są na jedynki, inne wartości na zera.

18

Koniunkcja vector operator &&(const

vector &v1,const

vector&v2)

v1&&v2 Koniunkcja po elementach wektorów v1 i v2

Alternatywa vector operator ||(const

vector &a,const vector

&b)

v1||v2 Alternatywa po elementach wektorów v1 i v2

Wyświetlanie

Wyświetlenie wektora void display(Text

name="")

v.display() Wyświetlanie wektora. Jako parametr można podać nazwę do wyświetlenia.

19

 1.5 Dane (data)

Wszystkie funkcje i metody wymienione w tym rozdziale działają zarówno dla obiektów typu macierz (matrix) jak i tabela (table).

 1.5.1 Deklaracja zmiennej

Metoda Deklaracja metody Przykład wywołania Opis działania

Utworzenie pustych

danych

data() data d Tworzone są puste dane

Utworzenie danych o

zadanych wymiarach

data(int m,int m) data d(5,3) Tworzone są dane o wymiarach m x n (m wierszy, n kolumn).

W tym przypadku tworzone są dane o wymiarach 5x3 (5 wierszy, 3 kolumny).

Utworzenie danych o

zadanym wymiarze

data(int m) data d(3) Tworzone są dane wymiarach m x m.

W tym przypadku tworzone są dane o wymiarach 3x3.

 1.5.2 Wymiary obiektu

Wymiary obiektu

Liczba wierszy int size1(const data &a)

int nrow(const data &a)

size1(d)

nrow(d)

Zwraca liczbę wierszy obiektu

Liczba kolumn int size2(const data &a) size2(d) Zwraca liczbę kolumn obiektu

20

int ncol(const data &a) ncol(d)

Długość int length(const data &a) length(d) Zwraca długość obiektu (większy z wymiarów). W przypadku obiektów, których jeden z wymiarów wynosi 1,

funkcja ta ma naturalną interpretację.

 1.5.3 Dostęp do obiektu

Dostęp do etykiet

Etykieta wiersza o

danym numerze

Text & rowname(int i) d.rowname(1) Zwraca etykietę wiersza o numerze 'i'. W tym przypadku pierwszego

Etykieta kolumny o

danym numerze

Text & colname(int j) d.colname(5) Zwraca etykietę kolumny o numerze 'j'. W tym przypadku 5

Dostęp do elementów

Dostęp do elementu za

pomocą numeru

wiersza i numeru

kolumny

T & operator ()(int i,int j) d(2,3) Zwraca element z wiersza ‘I’ i kolumny ‘j’. W tym przypadku z wiersza 2 i kolumny 3

Dostęp do elementu za

pomocą numeru

wiersza i nazwy

kolumny

T & operator ()(int i,Text

name2)

d(2,”COL3”) Zwraca element z wiersza ‘I’ i kolumny o nazwie name2. W tym przypadku z wiersza 2 i kolumny o nazwie

„COL3”

Dostęp do elementu za

pomocą nazwy wiersza

i numeru kolumny

T & operator ()(Text

name1,int j)

d(“ROW2”,3) Zwraca element z wiersza o nazwie name1 i kolumny ‘j’. W tym przypadku z wiersza o nazwie „ROW2” i

kolumny 3

Dostęp do elementu za

pomocą nazwy wiersza

T & operator ()(Text

name1,Text name2)

d(“ROW2”,”COL3”) Zwraca element z wiersza o nazwie name1 i kolumny o nazwie name2. W tym przypadku z wiersza o nazwie

„ROW2” i kolumny o nazwie „COL3”

21

i nazwy kolumny

Dostęp do elementu

wektora

T & operator ()(int i) d(5) Jeśli obiekt na jeden z wymiarów równy 1, czyli jest wektorem, aby dostać się do jego elementów wystarczy

podać tylko jeden argument – pozycję elementu. W tym przypadku zwracany jest element piąty.

Dostęp do kolumny

Wybór kolumny na

podstawie jej nazwy

data operator [](Text

name2)

d[“WIEK”] Zwracana jest kolumna danych o nazwie name2. W tym przypadku kolumna o etykiecie „WIEK”

Wybór kolumny na

podstawie jej numeru

data operator [](int j) d[16] Zwracana jest kolumna danych o numerze 'j'. W tym przypadku kolumna 16

 1.5.4 Wyszukiwanie

Wyszukiwanie wiersza, kolumny

Wyszukiwanie numeru

wiersza

int find_row(Text

name1,int upper=1)

d.find_row(„ROW1”) Zwraca numer wiersza o etykiecie name1. W przypadku nieznalezienia, zwraca 0. Parametr upper=1

oznacza, że wielkość liter w nazwie nie będzie brana pod uwagę.

W tym przypadku wyszukiwany jest wiersz o etykiecie „ROW1”.

Wyszukiwanie numeru

kolumny

int find_col(Text

name2,int upper=1)

d.find_col(„COL5”) Zwraca numer kolumny o etykiecie name2. W przypadku nieznalezienia, zwraca 0. Parametr upper=1

oznacza, że wielkość liter w nazwie nie będzie brana pod uwagę.

W tym przypadku wyszukiwana jest kolumna o etykiecie „COL5”.

Wyszukiwanie elementu

Wyszukiwanie

elementu w kolumnie o

danym numerze

int find_cell(T cell,int

col,int row0=1)

d.find_cell(“10 lat”,16) Przeszukuje kolumnę o numerze col, żeby znaleźć element cell. Zwraca numer wiersza, w którym jest

element cell. Jeśli nie znaleziono szukanego elementu, funkcja zwraca 0. Domyślnie szukanie rozpoczyna się

od wiersza o numerze 1. Można wybrać inny wiersz startowy (parametr row0).

W tym przypadku szukany jest element „10 lat” w kolumnie 16, począwszy od wiersza 1.

22

Wyszukiwanie

elementu w kolumnie o

danej nazwie

int find_cell(T cell,Text

cname,int row0=1,int

upper=1)

d.find_cell(“10

lat”,”WIEK”,1000)

Przeszukuje kolumnę o nazwie cname, żeby znaleźć element cell. Zwraca numer wiersza, w którym jest

element cell. Jeśli nie znaleziono szukanego elementu, funkcja zwraca 0. Domyślnie szukanie rozpoczyna się

od wiersza o numerze 1. Można wybrać inny wiersz startowy (parametr row0). Parametr upper=1 oznacza,

że wielkość liter w nazwie nie będzie brana pod uwagę.

W tym przypadku szukany jest element „10 lat” w kolumnie o nazwie „WIEK”, począwszy od wiersza 1000.

 1.5.5 Zmiana rozmiaru i kształtu

Zmiana rozmiaru i kształtu

Zmiana rozmiaru

obiektu

void resize(int m_new,int

n_new)

d.resize(5,10) Zmiana wymiarów obiektu. Po zmianie obiekt ma m_new wierszy i n_new kolumn. Zawartość obiektu ulega

skasowaniu.

W tym przypadku obiekt będzie miał wymiary 5x10

Zmiana rozmiaru

obiektu z zachowaniem

zawartości

void resizec(int m_new,int

n_new)

d.resizec(5,10) Zmiana wymiarów obiektu. Po zmianie obiekt ma m_new wierszy i n_new kolumn. Zawartość obiektu jest

zachowywana. Jeśli nowe wymiary są większe od pierwotnych, to elementy nie występujące w obiekcie

pierwotnym pozostają puste (dla typu tekst) lub 0 (dla typu liczbowego).

W tym przypadku obiekt będzie miał wymiary 5x10

Przegrupowanie

obiektu

void reshape(int

m_new,int n_new)

d.reshape(5,10) Przegrupowanie obiektu pozwala zmienić układ elementów obiektu. Wymagane jest, aby liczba elementów

pierwotnego i docelowego była taka sama. Elementy są kopiowane kolumnami.

W tym przypadku jeśli ‘d’ ma 50 elementów (np. ma wymiary 25x2), to może zostać przegrupowane do

obiektu o wymiarach 5x10.

Zmiana w wektor data vect(const data &a) vect(d) Obiekt 'a' jest przegrupowywany w wektor kolumnowy. Elementy są kopiowane kolumnami.

Dodanie nowych

wierszy

void newrows(int m2) d.newrows(100) Dodawane są nowe wiersze do danych. Liczba nowych wierszy wynosi m2.

W tym przypadku dochodzi 100 wierszy.

23

Dodanie nowej

kolumny

void newcol(Text name2) d.newcol(„DOCHOD”) Dodawana jest nowa kolumna o nazwie name2 do danych.

W tym przypadku kolumna o etykiecie „DOCHOD”

 1.5.6 Sprawdzanie zawartości

Sprawdzanie zawartości

Czy pusty int isempty(const data &a) isempty(d) Sprawdzenie czy obiekt 'a' jest pusty. Zwraca 0 (false) lub 1 (true)

Czy kwadratowy int issqr(const data &a) issqr(d) Sprawdzenie czy obiekt 'a' jest kwadratowy. Zwraca 0 (false) lub 1 (true)

Czy symetryczny int issym(const data &a) issym (d) Sprawdzenie czy obiekt 'a' jest symetryczny względem głównej przekątnej. Zwraca 0 (false) lub 1 (true)

Czy jakikolwiek istotny int any(const data &a) any(d) Sprawdzenie czy obiekt 'a' zawiera jakikolwiek istotny element. W przypadku elementów tekstowych

nieistotny jest ciąg pusty znaków („”). W przypadku elementów liczbowych nieistotne są zera.

Zwraca 0 (false) lub 1 (true)

Czy wszystkie istotne int all(const data &a) all(d) Sprawdzenie czy wszystkie elementy obiektu 'a' są istotne. W przypadku elementów tekstowych nieistotny

jest ciąg pusty znaków („”). W przypadku elementów liczbowych nieistotne są zera.

Zwraca 0 (false) lub 1 (true)

 1.5.7 Tworzenie wektorów

Wektory stałych

Utworzenie wektora data c(T,T,T,T,T,T,T,T,T,T) c(10,20,30,40,50)

c(“Ala”,”ma”,”kota”)

Tworzony jest wektor na podstawie stałych. W ten sposób można tworzyć wektory o długości do 10. Dłuższe

należy tworzyć za pomocą funkcji ‘vd’ dostępnej dla macierzy.

24

W pierwszym przypadku wektor liczb [10,20,30,40,50]. W drugim wektor tekstowy [„Ala”,”ma”,”kota”].

Powielanie

Powielenie zadaną

liczbę razy

data rep(const data &v,int

n)

rep(d,2) Zwraca dany wektor v powielony n razy.

W tym przypadku 2 razy

Powielenie do danej

długości

data replen(const data

&v,int l)

replen(d,10) Zwraca dany wektor v powielony tyle razy, aby wektor wynikowy miał długość l.

W tym przypadku zwracany jest wektor o długości 10

Powielenie każdego

elementu daną liczbę

razy

data repeach(const data

&v,int n)

repeach(d,2) Zwraca wektor v składający się z elementów wektora d, każdego powtórzonego n razy.

W tym przypadku zwracany jest wektor składający się z elementów wektora d, każdy element powtórzony 2

razy.

Powielenie każdego

elementu zdefiniowaną

liczbę razy

data rep(const data

&v,const vector &index)

rep(d,indeks) Zwraca wektor składający się z elementów wektora v, każdego powtórzonego zdefiniowaną w wektorze

index liczbę razy.

Przykładowo:

d to wektor [„Kot”, „Pies”]

indeks to wektor [2,3]

Wówczas zwracany jest wektor [„Kot”, ”Kot”, ”Pies” ,”Pies”, ”Pies”]

Utworzenie danych na

podstawie dwóch

wektorów i funkcji

data outer(const data

&v1,const data &v2,T

fun(T,T))

outer(d1,d2,suma) Tworzony jest obiekt prostokątny, którego elementy są wynikiem funkcji ‘fun’ wywołanej z argumentami

pochodzącymi z wektora v1 i v2. Elementy obiektu wyjściowego o współrzędnych (i,j) przyjmują wartości

fun(v1(i),v2(j)).

W tym przypadku zwracany jest obiekt, którego elementy to wywołanie funkcji ‘suma’ dla odpowiednich

elementów d1 i d2.

25

 1.5.8 Zmiana zawartości

Wypełnianie

Wypełnianie stałą void fill(T t) d.fill(„ABC”) Obiekt jest wypełniany stałą wartością ‘t’.

W tym przypadku, wszystkie elementy są wypełnione tekstem „ABC”

Wypełnianie stałą w

zakresie

void fill(T t,int m0,int

n0,int m_num,int n_num)

d.fill(„ABC”,1,2,10,20) Obiekt jest wypełniany stałą wartością ‘t’ w zadanym zakresie. W zakresie od wiersza ‘m0’ i kolumny ‘n0’

wypełnianych jest ‘m_num’ wierszy i ‘n_num’ kolumn.

W tym przypadku następuje wypełnienie tekstem „ABC” dziesięciu wierszy zaczynając od pierwszego i 20

kolumn zaczynając od drugiej.

Czyszczenie void clear(int clnames=0) d.clear() Obiekt jest czyszczony. Jeśli elementy są typu tekst, wstawiany jest pusty tekst („”). Jeśli elementy są

liczbowe, wstawiane są zera. Można wybrać, czy usunąć etykiety kolumn i wierszy (parametr ‘clnames’)

Aplikowanie funkcji

Aplikowanie funkcji do

elementów

void forall(T f(T)) d.forall(f) Na elementy obiektu nakładana jest funkcja ‘f’

Aplikowanie funkcji do

danej kolumny

void forcol(int n,T f(T)) d.forcol(2,f) Na elementy obiektu w kolumnie ‘n’ nakładana jest funkcja ‘f’

Aplikowanie funkcji do

danego wiersza

void forrow(int n,T f(T)) d.forrow(3,f) Na elementy obiektu w wierszu ‘n’ nakładana jest funkcja ‘f’

Tworzenie obiektu

poprzez aplikowanie

funkcji do elementów

data forall(const data

&d,T f(T))

forall(d,f) Tworzony jest obiekt, którego element powstają z elementów ‘d’ poprzez nałożenie funkcji ‘f’.

Tworzenie obiektu

poprzez aplikowanie

funkcji do danej

data forcol(const data

&d,int n,T f(T))

forcol(d,2,f) Tworzony jest obiekt, którego element powstają z elementów ‘d’. Na kolumnę o numerze ‘n’ nakładana jest

funkcja ‘f’.

26

kolumny

Tworzenie obiektu

poprzez aplikowanie

funkcji do danego

wiersza

data forrow(const data

&d,int n,T f(T))

forrow(d,3,f) Tworzony jest obiekt, którego element powstają z elementów ‘d’. Na wiersz o numerze ‘n’ nakładana jest

funkcja ‘f’.

 1.5.9 Kopiowanie

Kopiowanie zawartości

Kopiowanie fragmentu

(6 parametrów zakresu)

void copy(const data

&src,int m0_src,int

n0_src,int m_num,int

n_num,data &dst,int

m0_dst,int n0_dst)

copy(d,1,1,10,20,e,3,2

)

Kopiowanie fragmentu obiektu ‘src’ do obiektu ‘dst’. Można wybrać wiersz początkowy i liczbę wierszy

(parametry ‘m0_src’,’m_num’) oraz kolumnę początkową i liczbę kolumn do skopiowania (parametry

‘n0_src’, ‘n_num’). Można też określić, w które miejsce obiektu ‘dst’ wkopiować (parametry ‘m0_dst’,

‘n0_dst’). Operacja kopiowania jest zabezpieczona przed przekroczeniem zakresów obiektu docelowego.

W tym przypadku kopiuje się z ‘d’ do ‘e’. Pierwszych 10 wierszy i pierwszych 20 kolumn jest kopiowanych w

miejsce zaczynające się od 3 wiersza i drugiej kolumny ‘e’.

Kopiowanie fragmentu

(4 parametry zakresu)

void copy(const data

&src,int m0,int n0,int

m_num,int n_num,data

&dst)

copy(d,1,1,10,20,e) Kopiowanie fragmentu obiektu ‘src’ do obiektu ‘dst’. Można wybrać wiersz początkowy i liczbę wierszy

(parametry ‘m0’,’m_num’) oraz kolumnę początkową i liczbę kolumn do skopiowania (parametry ‘n0’,

‘n_num’). Operacja kopiowania jest zabezpieczona przed przekroczeniem zakresów obiektu docelowego.

W tym przypadku kopiuje się z ‘d’ do ‘e’. Pierwszych 10 wierszy i pierwszych 20 kolumn jest kopiowanych w

miejsce zaczynające się od pierwszego wiersza i pierwszej kolumny ‘e’.

Kopiowanie fragmentu

(2 parametry zakresu)

void copy(const data

&src,int m_num,int

n_num,data &dst)

copy(d,10,20,e) Kopiowanie fragmentu obiektu ‘src’ do obiektu ‘dst’. Można wybrać liczbę wierszy (parametry ’m_num’)

oraz liczbę kolumn do skopiowania (parametry ‘n_num’). Operacja kopiowania jest zabezpieczona przed

przekroczeniem zakresów obiektu docelowego.

W tym przypadku kopiuje się z ‘d’ do ‘e’. Pierwszych 10 wierszy i pierwszych 20 kolumn jest kopiowanych w

miejsce zaczynające się od pierwszego wiersza i pierwszej kolumny ‘e’.

27

Kopiowanie fragmentu

(bez parametrów

zakresu)

void copy(const data

&src,data &dst)

copy(d,e) Kopiowanie fragmentu obiektu ‘src’ do obiektu ‘dst’. Operacja kopiowania jest zabezpieczona przed

przekroczeniem zakresów obiektu docelowego.

W tym przypadku kopiuje się z ‘d’ do ‘e’.

Kopiowanie etykiet

Kopiowanie etykiet z

wierszy do wierszy

void copynames_r2r(const

data &src,data &dst)

copynames_r2r(d,e) Kopiowane są etykiety wierszy z obiektu ‘src’ do etykiet wierszy ‘dst’.

Kopiowanie etykiet z

kolumn do kolumn

void

copynames_c2c(const

data &src,data &dst)

copynames_c2c(d,e) Kopiowane są etykiety kolumn z obiektu ‘src’ do etykiet kolumn ‘dst’.

Kopiowanie etykiet z

kolumn do wierszy

void

copynames_c2r(const

data &src,data &dst)

copynames_c2r(d,e) Kopiowane są etykiety kolumn z obiektu ‘src’ do etykiet wierszy ‘dst’.

Kopiowanie etykiet z

wierszy do kolumn

void

copynames_r2c(const

data &src,data &dst)

copynames_r2c(d,e) Kopiowane są etykiety wierszy z obiektu ‘src’ do etykiet kolumn ‘dst’.

Kopiowanie etykiet void copynames(const

data &src,data &dst)

copynames(d,e) Kopiowane są etykiety wierszy i kolumn z obiektu ‘src’ do ‘dst’.

 1.5.10 Wybieranie i wstawianie

Wybieranie i wstawianie kolumn

Wybór

kolumn/kolumny

data col(const data

&d,const vector &index)

data col(const data &d,int

col(d,c(1,2,3))

col(d,5)

Z obiektu ‘d’ wybierane są kolumny zdefiniowane przez ‘index’. Można wskazać jedną kolumnę.

W pierwszym przypadku wybierane są kolumny 1, 2 i 3.

28

no)

data col(const vector

&index)

data col(int no)

d.col(c(1,2,3))

d.col(5)

W drugim przypadku wybierana jest kolumna piąta.

Wstawienie

kolumn/kolumny

setcol(const vector

&index,const data &cols)

setcol(int no,const data

&cols)

d.setcol(c(1,2,3),cols)

d.setcol(5,col7)

Do obiektu ‘d’ wstawiane są kolumny ‘cols’ w miejsce zdefiniowane przez wektor ‘index’. Można wstawić

jedną kolumnę, wskazując numer.

W pierwszym przypadku do ‘d’ wstawiane są ‘cols’ do 1, 2 i 3 kolumny.

W drugim przypadku do piątej kolumny ‘d’ wstawiana jest kolumna ‘col7’

Wybieranie i wstawianie wierszy

Wybór wiersza/wierszy data row(const data

&d,const vector &index)

data row(const data

&d,int no)

data row(const vector

&index)

data row(int no)

row(d,c(1,2,3))

row(d,5)

d.row(c(1,2,3))

d.row(5)

Z obiektu ‘d’ wybierane są wiersze zdefiniowane przez ‘index’. Można wskazać jeden wiersz.

W pierwszym przypadku wybierane są wiersze 1, 2 i 3.

W drugim przypadku wybierany jest wiersz piąty.

Wstawienie

wiersza/wierszy

setrow(const vector

&index,const data &rows)

setrow(int no,const data

&rows)

d.setrow(c(1,2,3),rows

)

d.setrow(5,row7)

Do obiektu ‘d’ wstawiane są wiersze ‘rows’ w miejsce zdefiniowane przez wektor ‘index’. Można wstawić

jeden wiersz, wskazując numer.

W pierwszym przypadku do ‘d’ wstawiane są ‘rows’ do 1, 2 i 3 wiersza.

W drugim przypadku do piątego wiersza ‘d’ wstawiany jest wiersz ‘row7’

Wybieranie i wstawianie

Wybór wierszy i kolumn data get(const data

&src,const vector

get(d,c(1,2),c(3,5)) Z obiektu ‘src’ wybierane są wiersze i kolumny zdefiniowane indeksami.

29

&index_rows,const vector

&index_cols)

data get(const vector

&index_rows,const vector

&index_cols)

d.get(c(1,2),c(3,5)) W tym przypadku z ‘d’ wybierane są elementy z wierszy 1 i 2 oraz kolumn 3 i 5.

Wstawianie wierszy i

kolumn

void set(const vector

&index_rows_dst,const

vector

&index_cols_dst,const

data &src,const vector

&index_rows_src,const

vector &index_cols_src)

e.set(c(20,15),c(1,2),d,

c(1,2),c(3,5))

Do obiektu w miejsce zdefiniowane indeksami docelowymi wstawiany jest fragment obiekt ‘src’

zdefiniowany indeksami źródłowymi.

W tym przypadku z ‘d’ wybierane są elementy z wierszy 1 i 2 i kolumn 3 i 5. Są one wstawiane do ‘e’ do

wierszy 20 i 15 i kolumn 1 i 2.

Wstawianie wierszy i

kolumn (bez definicji

indeksów źródłowych)

void set(const vector &

index_rows_dst,const

vector &

index_cols_dst,const data

&src)

e.set(c(20,15),c(1,2),d) Do obiektu w miejsce zdefiniowane indeksami docelowymi wstawiany jest obiekt ‘src’.

W tym przypadku z obiekt ‘d’ jest wstawiany do ‘e’ do wierszy 20 i 15 i kolumn 1 i 2.

 1.5.11 Łączenie

Łączenie

Łączenie obiektów

poprzez dodanie

kolumn

data operator | (const

data &a,const data &b)

a|b Obiekty ‘a’ i ‘b’ są łączone poprzez ich zestawienie obok siebie. Wymagana jest zgodność liczby wierszy.

Dołączanie kolumn void operator |=(const

data &a)

a|=b Obok obiektu ‘a’ jest dostawiany ‘b’. Wymagana jest zgodność liczby wierszy.

30

Łączenie obiektów

poprzez dodanie

wierszy

data operator & (const

data &a,const data &b)

a&b Obiekty ‘a’ i ‘b’ są łączone poprzez ich zestawienie jeden nad drugim. Wymagana jest zgodność liczby

kolumn.

Dołączanie wierszy void operator &=(const

data &a)

a&=b Pod obiektem ‘a’ jest dostawiany ‘b’. Wymagana jest zgodność liczby kolumn.

Tasowanie kolumn data shufflecol(const data

&a,const data &b)

shufflecol(a,b) Między kolumny ‘a’ są równomiernie wstawiane kolumny ‘b’

Tasowanie wierszy data shufflerow(const

data &a,const data &b)

shufflerow(a,b) Między wiersze ‘a’ są równomiernie wstawiane wiersze ‘b’

 1.5.12 Operacje zmiany orientacji

Operacje zmiany orientacji

Transpozycja data operator ~ (const

data &a)

void tr()

~d

d.tr()

Transpozycja wierszy i kolumn. W wersji ‘tr()’ obiekt musi być kwadratowy.

Zamiana lewo-prawo data fliplr(const data &a)

void fliplr()

fliplr(d)

d.fliplr()

Zamiana elementów z lewej na prawo.

Zamiana góra-dół data flipud(const data &a)

void flipud()

flipud(d)

d.flipud()

Zamiana elementów z gór na dół.

Obrót o 90 stopni data rot90(const data &a)

void rot90()

rot90(d)

d.rot90()

Obrót o 90 stopni.

31

Przesunięcie w górę data up(const data &a)

void up()

up(d)

d.up()

Przesunięcie trójkątne w górę.

Przesunięcie w dół data down(const data &a)

void down()

down(d)

d.down()

Przesunięcie trójkątne w dół.

Dolny trójkąt data tril(const data &a)

void tril()

tril(d)

d.tril()

Dolny trójkąt (górny wypełniony „” lub 0).

Górny trójkąt data triu(const data &a)

void triu()

triu(d)

d.triu()

Górny trójkąt (dolny wypełniony „” lub 0).

 1.5.13 Zamiana wierszy, kolumn

Zamiana wierszy, kolumn

Zamiana wierszy void swap_rows(int r1,int

r2)

d.swap_rows(2,10) Zamiana wierszy.

W tym przypadku zamiana wiersza 2 z 10.

Zamiana kolumn void swap_cols(int c1,int

c2)

d.swap_cols(2,10) Zamiana kolumn.

W tym przypadku zamiana kolumny 2 z 10.

Losowy układ wierszy void

random_shuffle_rows()

d.random_shuffle_ro

ws()

Wiersze są układane w losowej kolejności

Losowy układ kolumn void

random_shuffle_cols()

d.random_shuffle_col

s()

Kolumny są układane w losowej kolejności

32

Zmiana kolejności

wierszy

void reorder_rows(const

vector &ord,int

reord_values=1,int

reord_labels=1)

d.reorder_rows(ord) Wiersze są układane w kolejności zdefiniowanej przez wektor ord. Można określić, czy zmiana kolejności

dotyczy wartości (parametr reord_values), czy etykiet (parametr reord_labels). Domyślnie zamieniane są i

wartości, i etykiety.

Zmiana kolejności

kolumn

void reorder_cols(const

vector &ord,int

reord_values=1,int

reord_labels=1)

d.reorder_cols(ord) Kolumny są układane w kolejności zdefiniowanej przez wektor ord. Można określić, czy zmiana kolejności

dotyczy wartości (parametr reord_values), czy etykiet (parametr reord_labels). Domyślnie zmieniane są i

wartości , i etykiety.

 1.5.14 Pozostawianie wybranych wierszy, kolumn

Pozostawianie wybranych wierszy, kolumn

Pozostawianie wierszy

od-do

void leave_rows(int r1,int

r2)

d.leave_rows(50,100) Pozostawianie wierszy od r1 do r2

Pozostawianie kolumn

od-do

void leave_cols(int c1,int

c2)

d.leave_cols(50,100) Pozostawianie kolumn od c1 do c2

Pozostawianie wierszy

do danego

void leave_rows_to(int r2) d.leave_rows_to(100) Pozostawianie wierszy od 1 do r2

Próbka losowa

określona ilościowo

data sample_n(int num,int

repl=0)

d.sample_n(1000) Losuje próbkę o liczności num z danych. Parametr repl określa, czy losowanie ma być ze zwracaniem

(domyślnie bez zwracania).

W przykładzie wylosowanych będzie 1000 przypadków bez zwracania.

Próbka losowa

określona udziałem

data sample_frac(double

frac,int repl=0)

d.sample_frac(0.5,1) Losuje próbkę o zdefiniowanym udziale z danych. Parametr frac określa udział. Parametr repl określa, czy

losowanie ma być ze zwracaniem (domyślnie bez zwracania).

W przykładzie wylosowanych będzie 50% przypadków ze zwracaniem.

33

Operacje warunkowe

Filtrowanie danych data filter(const data

&d,const vector &v)

data filter(const vector

&v)

filter(d,v)

d.filter(v)

Z obiektu ‘d’ są wybierane wiersze, dla których wektor warunkowy ‘v’ przyjmuje wartości 1 (pomijane są te z

0). Długość ‘v’ musi być zgodna z liczbą wierszy ‘d’.

Druga wersja funkcji odwołuje się do obiektu ‘d’.

Dopasowywanie

wektorów

vector match(const data

&v1,const data &v2,int

fromlast=0,int

nomatch=0)

match(d,e) Sprawdzanie, na których pozycjach ‘v2’ są elementy ‘v1’. Zwracany jest wektor pozycji. Można wybrać

kolejność działania funkcji (parametr ‘fromlast’) i co wstawić w przypadku, gdy nie znaleziono dopasowania

(parametr ‘nomatch’).

 1.5.15 Operatory

Operatory dodawania

Operacja + data operator + (const

data &a,const T t)

data operator + (const T

t,const data &a)

data operator + (const

data &a,const data &b)

d+1.5

“ABC”+d

d+e

Dodawanie elementu 't' do obiektu 'a'. Element (liczba lub tekst) jest dodawany do każdego elementu

obiektu.

Dodawanie dwóch obiektów o zgodnych rozmiarach ('a' do 'b') . Dodawanie odbywa się po pozycjach.

W przypadku liczb operacja + sumuje wartości. W przypadku tekstów operacja + scala teksty.

Operacja += void operator +=(const

data &a)

void operator +=(const T

t)

d+=e

d+=1.5

d+=”ABC”

Dodawanie analogiczne do +, ale przyrostowo na obiekcie.

Operatory porównania dwóch obiektów

34

Porównanie int compare<>(const data

&a,const data &b)

compare(d,e) Zwraca wynik porównania obiektów 'a' i 'b'. Jeśli jednakowe, zwraca 1 (true). Jeśli różne, zwraca 0 (false).

==, !=, <, >, <=, >= vector operator == (const

data &a,const data &b)

 itd.

d <= e

d > e

Porównanie wektorów 'a' i 'b' po pozycjach. Zwraca wektor zero-jedynkowy (0 – false, 1 – true).

Operatory porównania obiektu ze stałą

==, !=, <, >, <=, >= vector operator ==(const

data &a,const U u)

itd.

d <= 1.5

d <= “ABC”

d <= Text(“ABC”)

d <= d(“2012-01-01”)

Porównanie wektora 'a' ze stałą 'u', która może być typu liczba, tekst lub data. Zwraca wektor zero-

jedynkowy (0 – false, 1 – true).

 1.5.16 Sortowanie

Sortowanie

Sortowanie wektora vector sort(data

&v,Direction

dir=ASCENDING,int

sort_labels=1)

sort(d) Sortowanie wektora ‘v’. Można wybrać kierunek sortowania (parametr ‘dir’) i czy sortować etykiety

(parametr ‘sort_labels’). Możliwe kierunki sortowania ASCENDING (rosnąco) i DESCENDING (malejąco).

Sortowanie dualne void sort(data &v1,data

&v2,Direction

dir=ASCENDING,int

sort_labels=1)

sort(d,e) Sortowanie dualne wektorów. Sortowany jest wektor ‘v1’. Kolejność przypadków w ‘v2’ jest taka sama jak

kolejność posortowanego ‘v1’. Można wybrać kierunek sortowania (parametr ‘dir’) i czy sortować etykiety

(parametr ‘sort_labels’)

Sortowanie danych void sort(int no,Direction

dir=ASCENDING,int

d.sort(1,DESCENDING, Sortowanie całych danych. Można określić numer lub nazwę wiersz/kolumny (parametr ‘no’/’name’),

35

sort_rows=1)

void sort(Text

name,Direction

dir=ASCENDING,int

sort_rows=1)

0)

d.sort(“WIEK”,DESCEN

DING,1)

kierunek sortowania (‘dir’) oraz czy sortować wiersze, czy kolumny (‘sort_rows’).

W pierwszym przypadku ‘d’ jest sortowana malejąco. Na podstawie pierwszego wiersza są sortowane

kolumny.

W drugim przypadku ‘d’ jest sortowana malejąco. Na podstawie kolumny „WIEK” są sortowane wiersze.

Kolejność danych vector order(const data

&v,Direction

dir=ASCENDING)

order(d) Zwracany jest wektor kolejności po posortowaniu ‘v’. Można wybrać kierunek sortowania (parametr ‘dir’).

 1.5.17 Operacje na zbiorach

Operacja na zbiorach

Elementy unikalne data unique(const data

&v,int fromlast=0)

unique(d) Zwraca elementy unikalne wektora danych. Można wybrać kolejność działania funkcji – od początku wektora

lub od końca (parametr ‘fromlast’)

Czy element int iselement(T t,const

data &v)

iselement(“KOT”,d) Sprawdza, czy dany element ‘t’ należy do zbioru ‘v’. Zwraca 0 - false lub 1 – true

Czy elementy vector iselement(const

data &v1,const data &v2)

iselement(e,d) Sprawdza, czy elemeny ‘v1’ należą do zbioru ‘v2’. Zwraca wektor zero-jedynkowy (0 - false lub 1 – true)

Suma zbiorów data setunion(const data

&,const data &)

setunion(d,e) Zwraca sumę zbiorów

Iloczyn zbiorów data setintersect(const

data &,const data &)

setintersect(d,e) Zwraca iloczyn zbiorów

Różnica zbiorów data setdiff(const data setdiff(d,e) Zwraca różnicę zbiorów

36

&,const data &)

Czy równe zbiory int setequal(const data

&,const data &)

setequal(d,e) Zwraca 1 (true), jeśli zbiory są równe. Zwraca 0 (false), jeśli zbiory są różne

 1.5.18 Operacje plikowe

Operacje plikowe

Wczytanie danych z

pliku tekstowego /

zapis do pliku

tekstowego

int readtxt(const char

*name,int

show_progress=0,int

row_lab=1,int

col_lab=1,int

quote=0,char

col_sep='\t',int

show_open_err=1)

int writetxt(const char

*name,int

show_progress=0,int

row_lab=1,int

col_lab=1,int

quote=0,char

col_sep='\t',char

dec_sep=',',int

show_open_err=1)

d.readtxt(“plik.txt”)

d.writetxt(“plik.txt”)

Odczyt / zapis danych. Możliwe parametry:

- name – nazwa pliku

- show_progress – czy pokazywać postęp odczytu/zapisu (domyślnie nie)

- row_lab – czy plik z etykietami wierszy (domyślnie tak)

- col_lab – czy plik z etykietami kolumn (domyślnie tak)

- quo te – czy elementy ujęte w cudzysłów (domyślnie nie)

- col_sep – separator kolumn (domyślnie tabulator)

- dec_sep – separator dziesiętny (domyślnie przecinek)

- show_open_err – czy komunikować błędy (domyślnie tak)

Funkcje zwracają 0, jeśli nie ma błędu. W innym przypadku 1.

Bezpieczne wczytanie

danych z pliku

tekstowego /

bezpieczny zapis

void sreadtxt(const char

*name,int

show_progress=0,int

row_lab=1,int

d.sreadtxt(“plik.txt”)

d.swritetxt(“plik.txt”)

Bezpieczny odczyt / zapis. Jeśli plik jest zajęty, funkcja czeka na jego zwolnienie. Parametry jak przy zwykłym

odczycie / zapisie. Inne parametry:

- repeat_time – czas po jakim następują próby dostępu do pliku (domyślnie 1 sek.)

37

danych do pliku

tekstowego

col_lab=1,int

quote=0,char

col_sep='\t',int

repeat_time=1)

void swritetxt(const char

*name,int

show_progress=0,int

row_lab=1,int

col_lab=1,int

quote=0,char

col_sep='\t',char

dec_sep=',',int

repeat_time=1)

 1.5.19 Wyświetlanie, kasowanie

Wyświetlanie, kasowanie

Wyświetlanie void display(Text

name="")

d.display() Obiekt jest wyświetlany w konsoli. Można podać jego nazwę (parametr ‘name’).

Kasowanie

Kasowanie void free() d.free() Obiekt jest kasowany. Zwalniana jest pamięć, z której korzystał.

38

 1.6 Macierz (matrix)

 1.6.1 Deklaracja zmiennej

Metoda Deklaracja metody Przykład wywołania Opis działania

Utworzenie pustej

macierzy

matrix() matrix m Tworzona jest pusta macierz

Utworzenie macierzy o

zadanych wymiarach

matrix(int m,int n) matrix m(5,3) Tworzona jest macierz o wymiarach m x n (m wierszy, n kolumn).

W tym przypadku tworzona jest macierz 5x3 (5 wierszy, 3 kolumny).

Utworzenie macierzy o

zadanym wymiarze

matrix(int m) matrix m(3) Tworzona jest macierz wymiarach m x m.

W tym przypadku tworzona jest macierz 3x3.

Utworzenie macierzy z

liczby

matrix(double c) matrix m(3.12) Tworzona jest macierz o wymiarach 1x1, z elementem równym 'c'.

W tym przypadku element macierzy 1x1 ma wartość 3.12.

Utworzenie macierzy na

podstawie napisu

matrix(const char

*matrix_str)

matrix m=”1 2; 3 4”

m=”1 2; \

 3 4”

Tworzona jest macierz na podstawie napisu. Elementy w wierszu oddziela się spacjami, a średnik oznacza

przejście do nowego wiersza.

W pierwszym przykładzie powstaje macierz o wymiarach 2x2. Tę samą macierz dzięki symbolowi kontynuacji

\ można zadeklarować w dwóch wierszach i wówczas jej zapis jest zgodny z naturalnym.

 1.6.2 Konwersja

39

Konwersja

Konwersja na liczbę

całkowitą

operator int() int(d) Macierz o wymiarach 1x1 zamieniana jest na liczbę całkowitą. Jeśli ma inne wymiary, pojawia się komunikat

błędu

Konwersja na liczbę

rzeczywistą

operator double() double(d) Macierz o wymiarach 1x1 zamieniana jest na liczbę rzeczywistą. Jeśli ma inne wymiary, pojawia się

komunikat błędu

Konwersja na wektor

liczb całkowitych

vector as_vector(const

matrix &m)

as_vector(d) Jeśli macierz ‘m’ ma jeden z wymiarów równy 1 (jest wektorem), to jest zwracany wektor liczb całkowitych

(vector) utworzony na jej podstawie. Jeśli ‘m’ ma inne wymiary, pojawia się komunikat błędu. Rzeczywiste

wartości elementów są konwertowane na liczby całkowite. Obiekt wynikowy nie ma etykiet.

 1.6.3 Tworzenie

Tworzenie wektorów

Wektor stałych matrix vd(intl ,...) vd(4, 0.2, 1.5, -3.85,

10.0)

Tworzenie wektora wierszowego o długości l, wypełnionego podanymi stałymi.

W tym przypadku powstaje wektor [0.2, 1.5, -3.85, 10.0]

Jako stałe należy podawać liczby rzeczywiste (musi wystąpić kropka).

Sekwencje liczb matrix seq(double

a,double b)

seq(double a,double

step,double b)

matrix seq(int a,int b)

matrix seq(int a,int

step,int b)

seq(1,9)

seq(1,2,9)

Tworzenie wektora wierszowego zawierającego sekwencję liczb od 'a' do 'b', krokiem 1 lub 'step'.

W pierwszym przypadku powstaje wektor [1, 2, 3, 4, 5, 6, 7, 8, 9]

W drugim przypadku powstaje wektor [1, 3, 5, 7, 9]

Wektory liniowe matrix linspace(double linspace(1,2,5) Tworzenie wektora o długości n, zawierającego liczby z przedziału od 'a' do 'b'. Domyślnie długość wynosi

40

a,double b,int n=100) 100.

W tym przypadku powstaje wektor [1.0, 1.25, 1.5, 1.75, 2.0]

Tworzenie macierzy

Macierz zerowa matrix zeros(int m,int n)

matrix zeros(int m)

zeros(5,3)

zeros(5)

Tworzenie macierzy o wymiarach m x n wypełnionej zerami.

Tworzenie macierzy o wymiarach m x m wypełnionej zerami.

Macierz jedynkowa matrix ones(int m,int n)

matrix ones(int m)

ones(5,3)

ones(5)

Tworzenie macierzy o wymiarach m x n wypełnionej jedynkami.

Tworzenie macierzy o wymiarach m x m wypełnionej jedynkami.

Macierz z rozkładu

jednostajnego

matrix rand(int m,int n)

matrix rand(int m)

rand(5,3)

rand(5)

Tworzenie macierzy o wymiarach m x n wypełnionej liczbami z rozkładu jednostajnego z przedziału [0,1].

Tworzenie macierzy o wymiarach m x m wypełnionej liczbami z rozkładu jednostajnego z przedziału [0,1].

Macierz z rozkładu

normalnego

matrix randn(int m,int n)

matrix randn(int m)

randn(5,3)

randn(5)

Tworzenie macierzy o wymiarach m x n wypełnionej liczbami z rozkładu normalnego o parametrach (0,1).

Tworzenie macierzy o wymiarach m x m wypełnionej liczbami z rozkładu normalnego o parametrach (0,1).

Macierz

identycznościowa

matrix eye(int m,int n)

matrix eye(int m)

eye(5,3)

eye(5)

Tworzenie macierzy o wymiarach m x n wypełnionej zerami, a na głównej przekątnej jedynkami.

Tworzenie macierzy o wymiarach m x m wypełnionej zerami, a na głównej przekątnej jedynkami.

Macierz diagonalna /

Przekątna główna

matrix diag(const matrix

&a)

m = diag(v)

v = diag(m)

1) Jeśli 'a' jest wektorem, to tworzona jest macierz kwadratowa wypełniona zerami, a na głównej przekątnej

wektorem 'a'.

2) Jeśli 'a' jest macierzą, to tworzeny jest wektor na podstawie przekątnej macierzy 'a'.

Tworzenie na

podstawie wektorów i

funkcji arytmetycznej

matrix outer(const matrix

&v1,const matrix

&v2,char fun)

outer(c(1,2,3,4),c(1,2,

3,4),'*')

Tworzona jest macierz, której elementy są wynikiem funkcji zdefiniowanej znakiem 'fun' z argumentami

pochodzącymi z wektora v1 i v2. Możliwe są funkcje: +, -, *, /. Elementy obiektu wyjściowego o

współrzędnych (i,j) przyjmują wartości fun(v1(i),v2(j)).

W tym przypadku zwracana jest tabliczka mnożenia do 16.

41

 1.6.4 Wypełnianie

Wypełnianie

Zerowanie void zeros() m.zeros() Macierz jest zerowana.

Wypełnianie jedynkami void ones() m.ones() Macierz jest wypełniana jedynkami.

Wypełnianie

wartościami z rozkładu

jednostajnego

void rand() m.rand() Macierz jest wypełniana wartościami z rozkładu jednostajnego [0,1].

Wypełnianie

wartościami z rozkładu

normalnego

void randn() m.randn() Macierz jest wypełniana wartościami z rozkładu normalnego o parametrach (0,1).

Wypełnianie

identycznościowe

void eye() m.eye() Macierz jest wypełniana zerami, a na głównej przekątnej jedynkami.

Wypełnianie

wartościami testowymi

void test(double

t=0.0,Text e="")

m.test() Macierz jest wypełniana wartościami testowymi (kolejne liczby całkowite). Etykiety przyjmują standardowe

nazwy (R1, R2, itd. C1, C2 itd.). Wartości mogą być przesunięte o stałą 't', a etykiety mogą mieć dołączony z

przodu człon 'e'.

 1.6.5 Podstawowe operacje

Podstawowe operacje

Wartość bezwzględna matrix abs(const matrix

&a)

void abs()

abs(m)

m.abs()

Tworzona jest macierz wypełniona wartościami bezwzględnymi elementów 'a'.

Nakładana jest funkcja abs na elementy.

42

Podniesienie

elementów do

kwadratu

matrix sqr(const matrix

&a)

void sqr()

sqr(m)

m.sqr()

Tworzona jest macierz wypełniona kwadratami elementów 'a'.

Nakładana jest funkcja ^2 na elementy.

Unormowanie matrix norm(const matrix

&a)

void norm()

norm(m)

m.norm()

Tworzona jest macierz z unormowanymi elementami 'a'. Unormowane wartości są z przedziału [0,1].

Macierz jest normowana.

Minimum matrix min(const matrix

&a)

min(m) Znajdowane jest minimum elementów każdej kolumny (lub wiersza, jeśli macierz jest wektorem

wierszowym). W wyniku zwracany jest wektor (lub macierz 1x1).

Maksimum matrix max(const matrix

&a)

max(m) Znajdowane jest maksimum elementów każdej kolumny (lub wiersza, jeśli macierz jest wektorem

wierszowym). W wyniku zwracany jest wektor (lub macierz 1x1).

Licznik matrix count(const matrix

&a)

count(m) Zliczane są elementy liczbowe różne od NAN każdej kolumny (lub wiersza, jeśli macierz jest wektorem

wierszowym). W wyniku zwracany jest wektor (lub macierz 1x1).

Suma matrix sum(const matrix

&a)

sum(m) Wyliczana jest suma elementów każdej kolumny (lub wiersza, jeśli macierz jest wektorem wierszowym). W

wyniku zwracany jest wektor (lub macierz 1x1).

Suma kwadratów matrix sumsqr(const

matrix &a)

sumsqr(m) Wyliczana jest suma kwadratów elementów każdej kolumny (lub wiersza, jeśli macierz jest wektorem

wierszowym). W wyniku zwracany jest wektor (lub macierz 1x1).

Iloczyn matrix prod(const matrix

&a)

prod(m) Wyliczany jest iloczyn elementów każdej kolumny (lub wiersza, jeśli macierz jest wektorem wierszowym). W

wyniku zwracany jest wektor (lub macierz 1x1).

Suma skumulowana matrix cumsum(const

matrix &a)

cumsum(m) Wyliczana jest suma skumulowana elementów każdej kolumny (lub wiersza, jeśli macierz jest wektorem

wierszowym).

Iloczyn skumulowany matrix cumprod(const

matrix &a)

cumprod(m) Wyliczany jest iloczyn skumulowany elementów każdej kolumny (lub wiersza, jeśli macierz jest wektorem

wierszowym).

Przeciwieństwo void minus() m.minus() Elementy macierzy są zamieniane na przeciwne.

43

 1.6.6 Operacje statystyczne

Operacje statystyczne

Wartość średnia

(oczekiwana)

matrix mean(const matrix

&a)

mean(m) Obliczana jest wartość średnia elementów każdej kolumny (lub wiersza, jeśli macierz jest wektorem

wierszowym). W wyniku zwracany jest wektor (lub macierz 1x1).

Wariancja matrix var(const matrix

&a)

var(m) Obliczana jest wariancja elementów każdej kolumny (lub wiersza, jeśli macierz jest wektorem wierszowym).

W wyniku zwracany jest wektor (lub macierz 1x1).

Odchylenie

standardowe

matrix stdev(const matrix

&a)

stdev(m) Obliczane jest odchylenia standardowe elementów każdej kolumny (lub wiersza, jeśli macierz jest wektorem

wierszowym). W wyniku zwracany jest wektor (lub macierz 1x1).

Mediana matrix median(const

matrix &a)

median(m) Obliczana jest mediana elementów każdej kolumny (lub wiersza, jeśli macierz jest wektorem wierszowym).

W wyniku zwracany jest wektor (lub macierz 1x1).

Moda matrix mode(const matrix

&a)

mode(m) Obliczana jest moda elementów każdej kolumny (lub wiersza, jeśli macierz jest wektorem wierszowym). W

wyniku zwracany jest wektor (lub macierz 1x1).

Kwantyl / kwantyle matrix quantile(const

matrix &a,double c)

matrix quantile(const

matrix &a,const matrix

&v)

quantile(m,0.5)

quantile(m,c(0.25,

0.75))

Obliczany jest kwantyl elementów każdej kolumny (lub wiersza, jeśli macierz jest wektorem wierszowym). W

wyniku zwracany jest wektor (lub macierz 1x1). Można wyliczyć kwantyl dla jednej wartości 'c' lub kilka

kwantyli zdefiniowanych w wektorze 'v'.

W pierwszym przypadku obliczany jest kwantyl 50%.

W drugim przypadku obliczany są kwantyle 25% i 75%.

Crossproduct matrix crossprod(const

matrix &a)

crossprod(m) Obliczana jest suma iloczynów każdej kolumny z każdą macierzy 'a'.

Kowariancja matrix cov(const matrix

&a)

cov(m) Obliczana jest kowariancja każdej kolumny z każdą macierzy 'a'.

44

Korelacja matrix cor(const matrix

&a)

cor(m) Obliczana jest korelacja każdej kolumny z każdą macierzy 'a'.

Histogram matrix hist(const matrix

&a)

hist(m) Wyznaczany jest histogram dla każdej kolumny. Wynik jest macierzą z podanymi udziałami w przedziałach.

 1.6.7 Ogólne podsumowanie

Operacje statystyczne

Podsumowanie kolumn matrix summarise(double

f(const matrix &))

m.summarise(fun1) Dla każdej kolumny (lub wiersza, jeśli macierz jest wektorem wierszowym) wyliczania jest wartość funkcji f.

Funkcja f ma działać na wektorze i zwracać jedną liczbę. W wyniku zwracany jest wektor (lub macierz 1x1).

Podsumowanie kolumn

z parametrem

matrix summarise(double

f(const matrix

&,double),double)

m.summarise(fun2,

3.5)

Dla każdej kolumny (lub wiersza, jeśli macierz jest wektorem wierszowym) wyliczania jest wartość funkcji f.

Funkcja f ma działać na wektorze, posiadać dodatkowy parametr liczbowy i zwracać jedną liczbę. W wyniku

zwracany jest wektor (lub macierz 1x1).

 1.6.8 Operacje dwuargumentowe

Operacje dwuargumentowe

Minimum

dwuargumentowe

matrix min(const matrix

&a,const matrix &b)

matrix min(const matrix

&a,const double c)

matrix min(const double

c,const matrix &a)

min(m1,m2)

min(m,20)

Minimum po pozycjach macierzy 'a' i 'b'.

Minimum macierzy 'a' i stałej 'c'.

45

Maksimum

dwuargumentowe

matrix max(const matrix

&a,const matrix &b)

matrix max(const matrix

&a,const double c)

max(const double c,const

matrix &a)

max(m1,m2)

max(m,20)

Maksimum po pozycjach macierzy 'a' i 'b'.

Maksimum macierzy 'a' i stałej 'c'.

Kowariancja

dwuargumentowa

double cov(const matrix

&a,const matrix &b)

cov(m1,m2) Kowariancja wektorów 'a' i 'b'. W wyniku zwracana jest liczba.

Korelacja

dwuargumentowa

double cor(const matrix

&a,const matrix &b)

cor(m1,m2) Korelacja wektorów 'a' i 'b'. W wyniku zwracana jest liczba.

Suma warunkowa matrix sumif(const matrix

&a,const vector &v)

sumif(m,v) Suma warunkowa elementów w kolumnach macierzy 'a'. Wektor 'v' definiuje, które wiersze brać pod uwagę

przy sumowaniu. Zwracany jest wektor wierszowy.

Średnia warunkowa matrix meanif(const

matrix &a,const vector

&v)

meanif(m,v) Średnia warunkowa elementów w kolumnach macierzy 'a'. Wektor 'v' definiuje, które wiersze brać pod

uwagę przy uśrednianiu. Zwracany jest wektor wierszowy.

 1.6.9 Operatory

Operatory i funkcje arytmetyczne

+, -, *, / matrix operator +(const

matrix &a,const matrix

&b)

matrix operator +(const

matrix &a,const double c)

m1+m2

m+10.0

m1+=m2

m+=10.0

Umożliwiają wykonywanie operacji arytmetycznych na dwóch macierzach lub macierzy i liczbie rzeczywistej.

Operacje +,-,*,/ są wykonywane po pozycjach.

46

matrix operator +(const

double c,const matrix &a)

void operator +=(const

matrix &a)

void operator +=(const

double c)

Mnożenie macierzowe matrix mul(const matrix

&a,const matrix &b)

matrix mulT(const matrix

&a,const matrix &b)

mul(m1,m2)

mulT(m1,m2)

Mnożenie macierzowe.

Mnożenie macierzowe z transpozycją. Odpowiada operacji mul(a,~b)

Podniesienie do

kwadratu z

transpozycją

matrix sqrT(const matrix

&a)

sqrT(m) Podniesienie do kwadratu z transpozycją. Odpowiada operacji mul(a,~a).

Podniesienie do

kwadratu z

transpozycją 2

matrix sqrT2(const matrix

&a)

sqrT2(m) Podniesienie do kwadratu z transpozycją wersja 2. Odpowiada operacji mul(~a,a).

Iloczyn skalarny double scmul(const matrix

&a,const matrix &b)

scmul(m1,m2) Iloczyn skalarny.

Kwadrat skalarny double scsqr(const matrix

&a)

scsqr(m) Kwadrat skalarny.

Komutator double comut(const

matrix &a,const matrix

&b)

comut(m1,m2) Komutator.

Ślad double trace(const matrix

&a)

trace(m) Ślad macierzy.

47

Funkcje matematyczne

Sinus matrix sin(const matrix

&a)

void sin()

sin(m)

m.sin()

Sinus po elementach macierzy.

Cosinus matrix cos(const matrix

&a)

void cos()

cos(m)

m.cos()

Cosinus po elementach macierzy.

Tangens matrix tan(const matrix

&a)

void tan()

tan(m)

m.tan()

Tangens po elementach macierzy.

Sinus hiperboliczny matrix sinh(const matrix

&a)

void sinh()

sinh(m)

m.sinh()

Sinus hiperboliczny po elementach macierzy.

Cosinus hiperboliczny matrix cosh(const matrix

&a)

void cosh()

cosh(m)

m.cosh()

Cosinus hiperboliczny po elementach macierzy.

Tangens hiperboliczny matrix tanh(const matrix

&a)

void tanh()

tanh(m)

m.tanh()

Tangens hiperboliczny po elementach macierzy.

Arcus sinus matrix asin(const matrix

&a)

void asin()

asin(m)

m.asin()

Arcus sinus po elementach macierzy.

48

Arcus cosinus matrix acos(const matrix

&a)

void acos()

acos(m)

m.acos()

Arcus cosinus po elementach macierzy.

Arcus tangens matrix atan(const matrix

&a)

void atan()

atan(m)

m.atan()

Arcus tangens po elementach macierzy.

Eksponenta matrix exp(const matrix

&a)

void exp()

exp(m)

m.exp()

Eksponenta po elementach macierzy.

Logarytm matrix log(const matrix

&a)

void log()

log(m)

m.log()

Logarytm po elementach macierzy.

Logarytm dziesiętny matrix log10(const matrix

&a)

void log10()

log10(m)

m.log10()

Logarytm dziesiętny po elementach macierzy.

Potęga matrix pow(const matrix

&a, double d)

void pow(double d)

pow(m,3.0)

m.pow(3.0)

Potęga po elementach macierzy.

Potęga całkowita matrix pow(const matrix

&a, int d)

void pow(int d)

pow(m,3)

m.pow(3)

Potęga całkowita po elementach macierzy.

Pierwiastek matrix sqrt(const matrix sqrt(m) Pierwiastek po elementach macierzy.

49

&a)

void sqrt()

m.sqrt()

Zaokrąglenie w górę matrix ceil(const matrix

&a)

void ceil()

ceil(m)

m.ceil()

Zaokrąglenie w górę po elementach macierzy.

Zaokrąglenie w dół matrix floor(const matrix

&a)

void floor()

floor(m)

m.floor()

Zaokrąglenie w dół po elementach macierzy.

Operatory logiczne

Zaprzeczenie matrix operator !(const

matrix &a)

!m Zaprzeczenie elementów macierzy. Zera zamieniane są na jedynki, inne wartości na zera.

Koniunkcja matrix operator &&(const

matrix &a,const matrix

&b)

m1&&m2 Koniunkcja po elementach macierzy 'a' i 'b'

Alternatywa matrix operator ||(const

matrix &a,const matrix

&b)

m1||m2 Alternatywa po elementach macierzy 'a' i 'b'

Operatory porównania

==, !=, <, >, <=, >= matrix operator ==(const

matrix &a,const matrix

&b)

itd.

m1 == m2

m1 < m2

Operatory porównania umożliwiają porównanie macierzy 'a' i 'b' po pozycjach. Macierze nie muszą być

wektorami, jak to jest w przypadku operatorów dziedziczonych z obiektu data.

50

 1.6.10 Algebra liniowa

Projekcja i norma

Projekcja matrix proj(const matrix

&a,const matrix &b)

proj(m1,m2) Projekcja 'a' na 'b'

Norma double norm2(const

matrix &a)

norm2(m) Norma w przestrzeni R2.

Ortogonalizacja i dekompozycja

Ortonormalizacja void orthonorm() m.orthonorm() Ortogonalizacja Grama-Schmidta z normalizacją

Dekompozycja QR void QR_decomp(const

matrix &a,matrix

&Q,matrix &R)

QR_decomp(m,Q,R) Dekompozycja macierzy 'a' na macierz ortogonalną Q i trójkątną R

Dekompozycja LU void LU_decomp(const

matrix &a,matrix

&LU,matrix &pivot,int

&pivsign)

LU_decomp(m,LU,piv

ot,pivsign)

Dekompozycja macierzy 'a' na dwie macierze trójkątne L i U (dolną i górną). W wyniku zwracane jest złożenie

LU, macierz przestawień 'pivot' i znak przestawień 'pivsign'.

Układy równań

Wyznacznik double det(const matrix

&a)

det(m) Wyznacznik macierzy.

Rozwiązywanie układu

równań

matrix lineqns(const

matrix &a,const matrix

&b,LinearMethod

met=GAUSS)

lineqns(m,v) Zwraca rozwiązanie układu równań liniowych danego macierzą 'a' i kolumną 'b'. Za pomocą parametru 'met'

można wybrać metodę {GAUSS, QR_DECOMP, LU_DECOMP}. Domyślnie jest stosowana metoda eliminacji

Gaussa.

Macierz odwrotna matrix inv(const matrix

&a,LinearMethod

inv(m) Macierz odwrotna. Za pomocą parametru 'met' można wybrać metodę {GAUSS, QR_DECOMP,

LU_DECOMP}. Domyślnie jest stosowana dekompozycja LU.

51

met=LU_DECOMP)

 1.6.11 Regresja liniowa i inne metody numeryczne

Regresja liniowa

Sweeping void linreg_sweep(int

k1,int k2)

m.linreg_sweep(1,10) Sweeping macierzy dla kolumn od k1 do k2.

Regresja liniowa matrix linreg(const matrix

&a,const matrix &b)

linreg(m,v) Regresja liniowa dla zmiennych objaśniających 'a' i zmiennej objaśnianej 'b'.

Sweeping warunkowy void linreg_sweep_c(int

k1,int k2,const matrix

&cond,int dep)

m.linreg_sweep_c(1,1

0,v,10)

Sweeping macierzy dla kolumn od k1 do k2, wskazanych przez wektor zero-jedynkowy 'cond'. Parametr 'dep'

określa numer zmienne objaśnianej.

Regresja liniowa

warunkowa

matrix linreg_c(const

matrix &cross,const

matrix &cond,int dep)

linreg_c(iloczyny,wybr

ane,10)

Regresja liniowa. Parametr cross to macierz iloczynów zmiennych objaśniających i zmiennej objaśnianej.

Parametr cond to wektor zero-jedynkowy wskazujący zmienne do wykorzystania, 'dep' określa numer

zmiennej objaśniającej w macierzy cross.

Wygładzanie

Wygładzanie matrix smooth(const

matrix &v,int m,int n);

smooth(v,1,3) Wygładzanie za pomocą wielomianów interpolacyjnych. Parametr 'm' określa stopień wielomianu

interpolacyjnego (od 1 do 5), parametr 'n' liczbę punktów do uśrednienia (oczekiwana jest liczba

nieparzysta).

W tym przypadku wyznaczana jest 3-punktowa średnia ruchoma.

 1.6.12 Operacje na plikach binarnych

Regresja liniowa

52

Zapis do pliku void writebin(FILE *f) m.writebin(f) Macierz jest zapisywana do pliku.

Odczyt z pliku void readbin(FILE *f) m.readbin(f) Macierz jest odczytywana z pliku.

53

 1.7 Tabela (table)

 1.7.1 Deklaracja zmiennej

Metoda Deklaracja metody Przykład wywołania Opis działania

Utworzenie pustej tabeli table() table t Tworzona jest pusta tabela

Utworzenie tabeli o

zadanych wymiarach

table(int m,int n) table t(5,3) Tworzona jest tabela o wymiarach m x n (m wierszy, n kolumn).

W tym przypadku tworzona jest tabela 5x3 (5 wierszy, 3 kolumny).

 1.7.2 Konwersja

Konwersja

Konwersja na macierz operator matrix() matrix(t) Tabela jest zamieniana w macierz. Aby operacja była możliwa, konieczne jest wypełnienie tablicy

elementami tekstowymi, które konwertują się na liczby rzeczywiste.

 1.7.3 Wybór etykiet

Wybór etykiet

Wybór nazw kolumn table colnames(const

table &)

colnames(t) Etykiety kolumn są zwracane jako tabela.

Wybór nazw wierszy table rownames(const rownames(t) Etykiety wierszy są zwracane jako tabela.

54

table &)

 1.7.4 Tabela testowa

Tabela testowa

Wypełnianie

wartościami testowymi

void test(Text p="",Text

e="")

t.test() Tabela jest wypełniana wartościami testowymi (kolejne liczby całkowite). Etykiety przyjmują standardowe

nazwy (R1, R2, itd. C1, C2 itd.). Elementy mogą być poprzedzone tekstem 'p', a etykiety mogą mieć

dołączony z przodu człon 'e'.

 1.7.5 Operacje wyboru i faktorowe

Operacje wyboru i faktorowe

Wybór lub kasowanie

kolumn lub wierszy

table select(const table

&names,int cols=1,int

del=0)

t.select(c(”C1”,”C3”)) Z tabeli są wybierane lub kasowanie wskazane kolumny lub wiersze. Jeżeli cols=1, to operacja dotyczy

kolumn. Jeżeli cols=0, to operacja dotyczy wierszy. Jeżeli del=0, to następuje wybieranie. Jeżeli del=1, to

następuje kasowanie.

Wybieranie kolumn o

zadanych

właściwościach

table select_if(int f(const

table &))

t.select_if(funkcja) Z tabeli są wybierane kolumny o zadanych właściwościach. Argument ‘f’ to dowolna funkcja działająca na

pojedynczej kolumnie i zwracjąca wartość logiczną 0 lub 1 (0 – odrzuć kolumnę, 1 – zostaw kolumnę).

Przykładowo ‘f’ może wykrywać specyficzne wartości w kolumnie lub określać jej typ.

Podsumowanie w

grupach

table summarise(const

table &names,Text

formula,matrix f(const

matrix &)=sum, ...)

t.summarise(c(”ROK”,

”MARKA”),”SR_POJ=f(

POJ)”,mean)

Funkcja grupuje dane według pól, których nazwy są zdefiniowane jako names. W grupach wyliczane jest

podsumowanie według wzoru formula. Formułę definiuje się w postaci: „nazwa_wyniku =

f(nazwa_zmiennej)”. Nazwa_wyniku to dowolna nazwa, która pojawi się jako kolumna w wyniku zwracanym

przez summarise. Nazwa_zmiennej to nazwa dowolnej kolumny w tabeli, dla której wywołuje się

podsumowanie. Funkcję podsumowującą definiuje parametr ‘f’ – może to być jedna ze standardowych

funkcji macierzowych (count, sum, mean, min, max itd.) lub dowolna funkcja użytkownika. Domyślnie użyta

będzie funkcja sum.

55

W jednym wywołaniu summarise można podać do 10 formuł i funkcji i wyliczyć kilka podsumowań.

W przykładzie wykonanie zostanie grupowanie tabeli ‘t’ według zmiennych ROK i MARKA i w grupach

wyliczona zostanie zmienna SR_POJ jako średnia ze zmiennej POJ.

Przedziałowanie

zmiennej

table cut(const table

&X,const matrix

&breaks,int right=1)

cut(t,c(1,2,3)) Zmienna dana wektorem X jest przedziałowana. Przedziały są zdefiniowane granicami przez parametr

'breaks'. Parametr 'right' określa, czy przedziały mają być prawostronnie domknięte (domyślnie tak).

Wektor X może też być typu matrix.

Poziomy zmiennej table levels(const table

&X)

levels(t) Wyznaczane są poziomy wektora X.

Wektor X może też być typu matrix.

Tabela wystąpień table pivot(const table

&X)

table pivot(const table

&X1,const table &X2)

table pivot(const table

&X1,const table

&X2,const table &X3)

pivot(t)

pivot(t1,t2)

Wyliczana jest liczba wystąpień każdego poziomu wektora X. Jeśli argumentów jest więcej niż 1, to wyliczane

są wystąpienia dla każdej kombinacji poziomów wszystkich argumentów.

Wektory X mogą też być typu matrix.

Zastosowanie funkcji do

danych

table apply(const table

&X,const table

&index,matrix f(const

matrix &))

table apply(const table

&X,const table

&index,matrix f(const

matrix &,double),double

p)

apply(t,v,mean)

apply(t,v,quantile,0.25

)

W grupach zdefiniowanych przez 'index' wyliczane jest wartość funkcji f(X).

Wektor X może też być typu matrix.

W pierwszym przypadku wyliczane są średnie wartości 't' w grupach danych przez 'v'.

W drugim przypadku wyliczane są pierwsze kwartyle wartości 't' w grupach danych przez 'v'.

Funkcje mean i quantile są wbudowane w typ matrix. Można również wykorzystywać własne funkcje.

56

 1.7.6 Sortowanie

Sortowanie

Sortowanie według

wartości

void sortval(int

no,Direction

dir=ASCENDING,int

sort_rows=1)

void sortval(Text

name,Direction

dir=ASCENDING,int

sort_rows=1)

sortval(10)

sortval(„WIEK”)

Tabela jest sortowana według pola o numerze 'no'.

Tabela jest sortowana według pola o etykiecie name.

W odróżnieniu od funkcji 'sort' dziedziczonej z typu data, to sortowanie jest przeprowadzane według

wartości liczbowych, a nie według znakowych (liter). Można wybrać kierunek sortowania (parametr dir) oraz

czy sortować wiersze, czy kolumny (parametr sort_rows). Możliwe kierunki sortowania: ASCENDING -

rosnąco, DESCENDING – malejąco. Domyślnie rosnąco sortowane są wiersze.

 1.7.7 Tworzenie bazy do modelowania

Tworzenie bazy do modelowania

Tworzenie bazy

numerycznej

table

build_numerical_base(con

st table &input,BaseVer

ver=NORM,int

show_progress=0,Text

na="0")

build_numerical_base

(t)

Tworzona jest baza numeryczna do modelowania na podstawie tabeli 'input'. Można wybrać sposób

przygotowania pól (parametr ver), czy pokazywać postęp (parametr show_progress) oraz jakie wartości użyć

w miejsce braków danych (parametr na). Możliwe sposoby przygotowania to SIMP (prosty), NORM

(normalny), EXT (rozszerzony). Domyślnie tworzona jest baza sposobem normalnym, bez pokazywania

postępu.

Dla sposobu SIMP w wyniku zapisywane są zmienne liczbowe uzupełnione zerami w miejscu braków i

zmienne binarne utworzone ze zmiennych kategorialnych.

Dla sposobu NORM w wyniku zapisywane są te same zmienne co dla sposobu SIMP oraz dodatkowo

zmienne określające wypełnienie pól (dotyczy pól z brakującymi danymi).

Dla sposoby EXT wszystkie zmienne są zamieniane na binarne. Zmienne kategorialne analogicznie jak w

sposobie SIMP/NORM. Zmienne liczbowe są przedziałowane.

57

Tworzenie bazy

konstrukcyjnej i

walidacyjnej

void

constr_and_valid(Text

name_constr,Text

name_valid,double

percent_size,int

show_progress=0)

t.constr_and_valid(„d

ane_konstr.txt”,”dane

_walid.txt”,0.75)

Tabela 't' dzielona jest losowo na część konstrukcyjną i walidacyjną. Wyniki zapisywane są do plików o

nazwach name_constr i name_valid. Należy określić udział danych konstrukcyjnych (parametr percent_size).

Można określić, czy pokazywać postęp (parametr show_progress). Domyślnie postęp nie jest pokazywany.

Tworzenie bazy

numerycznej o

zadanych polach

void

build_numerical_with_col

umns(table

&tab_colnames,Text

name_data,Text

name_errors,int

show_progress=0,Text

na="0")

t.

build_numerical_with

_columns(nazwy_kolu

mn,”nowe_dane.txt”,”

bledy.txt”)

Na podstawie tabeli 't' tworzona jest baza numeryczna o zadanych polach (parametr tab_colnames). Wynik

zapisywany jest do pliku o nazwie name_data. Jeżeli w tabeli 't' brakuje pól niezbędnych do ukończenia

operacji, pojawiają się błędy, które są zapisywane do pliku o nazwie name_errors. Można określić, czy

pokazywać postęp (parametr show_progress). Domyślnie postęp nie jest pokazywany. Parametr 'na'

wskazuje, jakie wartości zastosować w miejsce braków danych.

58

 1.8 Macierz rzadka (sparse)

Metoda Deklaracja metody Przykład wywołania Opis działania

Utworzenie pustej

macierzy rzadkiej

sparse() sparse s Tworzona jest pusta macierz rzadka

Utworzenie macierzy

rzadkiej o zadanych

rozmiarach

sparse(int m,int n) sparse s(10,20) Tworzona jest macierz rzadka o wymiarach m x n (m wierszy, n kolumn)

Utworzenie macierzy

rzadkiej na podstawie

macierzy gęstej

sparse(const matrix &mat) matrix m=zeros(5,5)

sparse s=sparse(m)

Tworzona jest macierz rzadka na podstawie macierzy gęstej.

W przykładzie tworzona jest macierz gęsta 'm', a następnie macierz rzadka 's'. Zarówno 'm' jak i 's' to

macierze o wymiarach 5 x 5, wypełnione zerami.

Konwersja

Konwersja macierzy

rzadkiej na macierz

gęstą

operator matrix() sparse s=spzeros(5,5)

matrix m=matrix(s)

Tworzona jest macierz gęsta na podstawie macierzy rzadkiej.

W przykładzie tworzona jest macierz rzadka 's', a następnie macierz gęsta 'm'. Zarówno 's' jak i 'm' to

macierze o wymiarach 5 x 5, wypełnione zerami.

Konwersja macierzy

rzadkiej na liczbę

operator double() double(s) Macierz rzadka o wymiarach 1x1 zamieniana jest na liczbę rzeczywistą. Jeśli ma inne wymiary, pojawia się

komunikat błędu

Informacja o rozmiarach

Liczba wierszy int size1(const sparse &a)

int nrow(const sparse &a)

size1(s)

nrow(s)

Zwraca liczbę wierszy macierzy

Liczba kolumn int size2(const sparse &a) size2(s) Zwraca liczbę kolumn macierzy

59

int ncol(const sparse &a) ncol(s)

Liczba elementów

niezerowych

(istotnych)

int nonzero(const sparse

&a)

nonzero(s) Zwraca liczbę niezerowych elementów macierzy

Czy zaindeksowana int indexed(const sparse

&a)

indexed(s) Zwraca 1 (true), jeśli macierz ma indeks elementów; lub 0 (false), jeśli nie ma.

Zakresy niezerowe

Najmniejszy wiersz

istotny

int minrow(const sparse

&a)

minrow(s) Zwraca najmniejszy numer wiersza, w którym są elementy niezerowe

Największy wiersz

istotny

int maxrow(const sparse

&a)

maxrow(s) Zwraca największy numer wiersza, w którym są elementy niezerowe

Najmniejsza kolumna

istotna

int mincol(const sparse &a) mincol(s) Zwraca najmniejszy numer kolumny, w którym są elementy niezerowe

Największa kolumna

istotna

int maxcol(const sparse &a) maxcol(s) Zwraca największy numer kolumny, w którym są elementy niezerowe

Informacja o wypełnieniu

Czy element istnieje int iselem(int i,int j) iselem(2,7) Zwraca 1 (true), jeśli element (i,j) występuje w macierzy; 0 (false), jeśli nie występuje. Elementom macierzy

rzadkiej, które nie występują, odpowiada wartość 0.

Czy element jest

niezerowy

int iszero(int,int) iszero(2,7) Zwraca 1 (true), jeśli element (i,j) macierzy ma wartość 0; 0 (false), w przeciwnym przypadku. True jest

zwracane zarówno, gdy element nie występuje, jak i gdy występuje i przyjmuje wartość 0.

Indeksowanie

Indeksowanie void mkindex() s.mkindex() Macierz jest indeksowana. Indeks ułatwia wyszukiwanie elementów istotnych, dzięki czemu operacje na

macierzy są wykonywane szybciej.

60

Kasowanie indeksu void delindex() s.delindex() Indeks macierzy jest usuwany

Kopiowanie indeksu

(niskopoziomowe)

void cpyindex(const sparse

&src)

s.cpyindex(s2) Macierz otrzymuje indeks skopiowany z macierzy src. Wymagane jest, aby obie macierze (źródłowa i

docelowa) miały te same wymiary; oprócz tego trzeba mieć pewność, że pozycje niezerowe w obu

macierzach są na tych samych pozycjach.

Zmiana rozmiaru

Zmiana rozmiaru void resize(int m_new,int

n_new)

s.resize(5,10) Zmiana wymiarów macierzy. Po zmianie macierz ma m_new wierszy i n_new kolumn. Zawartość macierzy

ulega skasowaniu.

Zmiana rozmiaru z

zachowaniem

zawartości

void resizec(int m_new,int

n_new)

s.resizec(5,10) Zmiana wymiarów macierzy. Po zmianie macierz ma m_new wierszy i n_new kolumn. Zawartość macierzy

jest zachowywana. Jeśli nowe wymiary są większe od pierwotnych, to elementy nie występujące w obiekcie

pierwotnym pozostają niewypełnione.

Pakowanie i synchronizacja elementów

Pakowanie void pack() s.pack() Macierz jest pakowana. Po operacji pozostają tylko elementy istotne (niezerowe).

Odpakowanie void unpack() s.unpack() Macierz jest rozpakowywana. Po operacji wszystkie elementy nieistotne są reprezentowane w obiekcie

zerami.

Synchronizacja void synch(const sparse

&src)

s.synch(s2) Macierz jest synchronizowana z macierzą src. Uzgadniana jest kolejność elementów istotnych na liście,

dzięki czemu operacje, których argumentami jest macierz źródłowa i uzgodniona, są wykonywane szybciej

(patrz → arytmetyka macierzy zsynchronizowanych).

Dostęp do elementu

Dostęp do elementu double & operator ()(int

i,int j)

s(2,3) Zwraca element z wiersza 'i' i kolumny 'j'.

Szybki dostęp do

elementu

double get(int i,int j) s.get(2,3) Zwraca element z wiersza 'i' i kolumny 'j'. Funkcja działa szybciej niż operator ().

61

Szybkie wstawienie

wartości

void set(int i,int j,double d) s.set(2,3,11.5) Wstawia wartość 'd' do elementu z wiersza 'i' i kolumny 'j'. Funkcja działa szybciej niż operator ().

Dostęp do listy

elementów

(niskopoziomowo)

double & operator [](int l) s[15] Zwraca element o numerze 'l' z listy elementów istotnych macierzy.

Tworzenie

Macierz pusta sparse spempty(int m,int n) spempty(5,3) Tworzenie pustej macierzy rzadkiej o wymiarach m x n.

Macierz zerowa sparse spzeros(int m,int n) spzeros(5,3) Tworzenie macierzy rzadkiej o wymiarach m x n wypełnionej zerami.

Macierz jedynkowa sparse spones(int m,int n) spones(5,3) Tworzenie macierzy rzadkiej o wymiarach m x n wypełnionej jedynkami.

Macierz

identycznościowa

sparse speye(int m,int n) speye(5,3) Tworzenie macierzy rzadkiej o wymiarach m x n wypełnionej zerami, a na głównej przekątnej jedynkami.

Macierz testowa sparse sptest(int m,int n) sptest(5,3) Tworzenie macierzy rzadkiej o wymiarach m x n wypełnionej wartościami testowymi (kolejne liczby

naturalne)

Macierz losowa sparse sprand(int m,int n) sprand(5,3) Tworzenie macierzy rzadkiej o wymiarach m x n wypełnionej liczbami z rozkładu jednostajnego z przedziału

[0,1].

Wypełnianie

Wypełnianie zerami void zeros() s.zeros() Istotne elementy są zerowane

Wypełnianie jedynkami void ones() s.ones() Istotne elementy przyjmują wartość 1

Wypełnianie void fill(double c=1.0) s.fill(2.0) Istotne elementy są wypełnianie stałą c

Wypełnianie zer void fill0(double c=1.0) s.fill0(2.0) Istotne elementy wynoszące 0 są wypełnianie stałą c

Losowe wypełnianie void rfill(double c=1.0) s.rfill(3.12) Istotne elementy są wypełnianie liczbą losową z rozkładu jednostajnego [0,c]

62

Losowe wypełnianie

zer

void rfill0(double c=1.0) srfill0(1.5) Istotne elementy wynoszące 0 są wypełnianie liczbą losową z rozkładu jednostajnego [0,c]

Aplikowanie funkcji

Aplikowanie funkcji do

elementów

sparse forall(const sparse

&s,double f(double))

void forall(double

f(double))

forall(s,f1)

s.forall(f1)

Na elementy macierzy nakładana jest funkcja 'f'

Aplikowanie funkcji

dwuargumentowej do

elementów

sparse forall(const sparse

&s,double

f(double,double),double d)

void forall(double

f(double,double),double d)

sparse forall(const sparse

&s,double f(double,int),int

i)

void forall(double

f(double,int),int i)

forall(s,f1,3.52)

s.forall(f1,3.52)

forall(s,f1,82)

s.forall(f1,82)

Na elementy macierzy nakładana jest funkcja dwuargumentowa 'f'. Drugi argument funkcji 'f' (parametr)

jest przekazywany do funkcji forall.

Podstawowe operacje

Wartość bezwzględna sparse abs(const sparse &a)

void spabs()

abs(s)

s.spabs()

Tworzona jest macierz rzadka wypełniona wartościami bezwzględnymi elementów 'a'.

Podniesienie

elementów do

kwadratu

sparse sqr(const sparse &a)

void spsqr()

sqr(s)

s.spsqr()

Tworzona jest macierz rzadka wypełniona kwadratami elementów 'a'.

63

Suma double sum(const sparse

&a)

sum(s) Wyliczana jest suma wszystkich elementów macierzy 'a'.

Suma kwadratów double sumsqr(const

sparse &a)

sumsqr(s) Wyliczana jest suma kwadratów wszystkich elementów macierzy 'a'.

Operacje arytmetyczne

+, - sparse operator +(const

sparse &a,const sparse &b)

void operator +=(const

sparse &a)

void operator +=(const

double d)

s1+s2

s1+=s2

s1+=10.0

Umożliwiają wykonywanie operacji arytmetycznych na dwóch macierzach rzadkich lub macierzy rzadkiej i

liczbie rzeczywistej. Operacje +, - są wykonywane po pozycjach.

*, / sparse operator *(const

sparse &a,const double d)

sparse operator *(const

double d,const sparse &a)

void operator *=(const

double d)

sparse operator *(const

sparse &a,const sparse &b)

s1*10.0

10.0*s1

s1*=10.0

s1*s2

Umożliwiają wykonywanie operacji arytmetycznych na dwóch macierzach rzadkich lub macierzy rzadkiej i

liczbie rzeczywistej. Operacje *, / są wykonywane po pozycjach.

Mnożenie macierzowe sparse mul(const sparse

&a,const sparse &b)

mul(s1,s2) Mnożenie macierzowe

Arytmetyka macierzy zsynchronizowanych

Dodawanie sparse spplus(const sparse spplus(s1,s2) Dodawanie macierzy: a+b

64

&a,const sparse &b)

Zwiększanie void addassign(const

sparse &a)

s.addassign(s2) Zwiększanie macierzy: baza=baza+a

Zwiększanie i mnożenie

(wersja 1)

void addassign(double

d,const sparse &a)

s.addassign(10.0,s2) Zwiększanie i mnożenie macierzy: baza=baza*d+a

Zwiększanie i mnożenie

(wersja 2)

void addassign(const

sparse &a,double d)

s.addassign(s2,10.0) Zwiększanie i mnożenie macierzy: baza=baza+a*d

Odejmowanie sparse spminus(const

sparse &a,const sparse &b)

spminus(s1,s2) Odejmowanie macierzy: a-b

Odejmowanie i

mnożenie

sparse spminus(const

sparse &a,const sparse

&b,double d)

spminus(s1,s2,10.0) Odejmowanie macierzy: a-b*d

Zmniejszanie void subassign(const sparse

&a)

s.subassign(s2) Zmniejszanie macierzy: baza=baza-a

Zmniejszanie i

mnożenie (wersja 1)

void subassign(double

d,const sparse &a)

s.subassign(10.0,s2) Zmniejszanie macierzy: baza=baza*d-a

Zmniejszanie i

mnożenie (wersja 2)

void subassign(const sparse

&a,double d)

s.subassign(s2,10.0) Zmniejszanie macierzy: baza=baza-a*d

Mnożenie sparse spmul(const sparse

&a,const sparse &b)

spmul(s1,s2) Możenie macierzy po pozycjach: a*b

Dzielenie sparse spdiv(const sparse

&a,const sparse &b)

spdiv(s1,s2) Dzielenie macierzy po pozycjach: a/b

Przesuwanie elementów

65

Przesuwanie wierszy void shiftrows(int shift) s.shiftrows(2) Wiersze macierzy są przesuwane o 'shift'.

W przykładzie wiersze są przesuwane o 2 w dół.

Przesuwanie kolumn void shiftcols(int shift) s.shifcols(-3) Kolumny macierzy są przesuwane o 'shift'.

W przykładzie kolumny są przesuwane o 3 w lewo.

Operacje z plikami

Wczytanie int readtxt(char *name,int

show_open_err=1)

s.readtxt("plik.txt") Wczytanie macierzy rzadkiej z pliku o nazwie 'name'. Parametr 'show_open_err' określa, czy błędy odczytu

będą pokazywane. Funkcja „readtxt” zwraca 0, jeśli nie było błędów; i 1, jeśli był błąd odczytu.

Zapisanie int writetxt(char *name,int

show_open_err=1)

s.writetxt("plik.txt") Zapisanie macierzy rzadkiej do pliku o nazwie 'name'. Parametr 'show_open_err' określa, czy błędy zapisu

będą pokazywane. Funkcja „writetxt” zwraca 0, jeśli nie było błędów; i 1, jeśli był błąd zapisu.

Wyświetlanie

Wyświetlanie void display(const char

*name)

s.display("X") Macierz rzadka jest wyświetlana w konsoli. Należy podać ‘name’ - nazwę, która ma być wyświetlona.

Listowanie elementów void list(const char *name) s.list("X") Lista elementów macierzy rzadkiej jest wyświetlana w konsoli. Należy podać ‘name’ - nazwę, która ma być

wyświetlona.

Pokazanie indeksu void index(const char

*name)

s.index("X") Indeks macierzy rzadkiej jest wyświetlany w konsoli. Należy podać ‘name’ - nazwę, która ma być

wyświetlona.

Inne

Wybór wiersza sparse row(const sparse

&a,int i)

row(s,2) Z macierzy 'a' wybierany jest wiersz o numerze 'i'.

Transpozycja sparse operator ~(const

sparse &a)

void T()

~s

s.T()

Transpozycja macierzy

66

Porównanie int compare(const sparse

&a,const sparse &b)

compare(s1,s2) Zwraca wynik porównania macierzy 'a' i 'b'. Jeśli jednakowe, zwraca 1 (true). Jeśli różne, zwraca 0 (false).

Kasowanie void free() s.free() Macierz jest kasowana. Zwalniana jest pamięć, z której korzystała.

67

 1.9 Metody numeryczne (numproc)

Metoda Deklaracja metody Przykład wywołania Opis działania

Metody jednowymiarowe

Całkowanie

numeryczne

double integral(double

f(double),double a,double

b,double tol)

integral(sin,0.0,2.0,1e-

6)

Zwraca wynik całkowania funkcji 'f' w przedziale [a,b]. Obliczenia są przeprowadzane z dokładnością 'tol'

Pochodna numeryczna double derivative(double

f(double),double x,double

tol)

derivative(cos,0.0,1e-

4)

Zwraca pochodną funkcji 'f' w punkcie 'x'. Obliczenia są przeprowadzane z dokładnością 'tol'

Wyszukiwanie

minimum funkcji

double fmin(double

f(double),double a,double

b,double tol)

fmin(fun1,-2.0,2.0,1e-

9)

Znajduje i zwraca najmniejszą wartość funkcji 'f' w przedziale [a,b]. Obliczenia są przeprowadzane z

dokładnością 'tol'

Wyszukiwanie miejsc

zerowych funkcji

double fzero(double

f(double),double x,double

tol)

fzero(fun2,10.0,1e-12) Znajduje i zwraca miejsce zerowe funkcji 'f' w pobliżu 'x'. Obliczenia są przeprowadzane z dokładnością 'tol'

Minimalizacja wielowymiarowa

Wyszukiwanie

minimum funkcji

wielowymiarowej

metodą sympleksów

int fmins(double F(matrix

&),matrix &x,double tol)

fmins(FUN1,x,1e-9) Znajdowane jest minimum funkcji wielowymiarowej F metodą sympleksów. 'x' musi być wektorem

kolumnowym o długości zgodnej z długością argumentu funkcji F. Początkowa wartość 'x' powinna

znajdować się blisko rozwiązania. Obliczenia są przeprowadzane z dokładnością 'tol', a wynik jest zwracany

w zmiennej 'x'.

Wyszukiwanie

minimum funkcji

wielowymiarowej

metodą gradientów

int fminu(double F(matrix

&),double dF(matrix

&,int),matrix &x,double

tol,EsMethod met=DFP)

fmins(FUN1,dFUN1,x,

1e-9)

Znajdowane jest minimum funkcji wielowymiarowej F metodą gradientów. Wymagana jest znajomość

pochodnej funkcji dF. 'x' musi być wektorem kolumnowym o długości zgodnej z długością argumentu funkcji

F. Początkowa wartość 'x' powinna znajdować się blisko rozwiązania. Obliczenia są przeprowadzane z

dokładnością 'tol', a wynik jest zwracany w zmiennej 'x'. Wybrać można metodę 'met': DFP (Davidon-

Fletcher-Powell) lub BFS (Broyden-Fletcher-Shanno).

68

Wyszukiwanie

minimum funkcji

wielowymiarowej

metodą złożoną

int fminx(double F(matrix

&),double dF(matrix

&,int),matrix &x,double

tol,EsSpeed

speed=Normal,EsMethod

met=DFP)

fminx(FUN1,dFUN1,x,

1e-9)

Znajdowane jest minimum funkcji wielowymiarowej F metodą złożoną. Wymagana jest znajomość

pochodnej funkcji dF. 'x' musi być wektorem kolumnowym o długości zgodnej z długością argumentu funkcji

F. Początkowa wartość 'x' powinna znajdować się blisko rozwiązania. Obliczenia są przeprowadzane z

dokładnością 'tol', a wynik jest zwracany w zmiennej 'x'. Wybrać można szybkość estymacji 'speed': Slow,

Normal, Fast, Fastest; oraz metodę 'met': DFP (Davidon-Fletcher-Powell) lub BFS (Broyden-Fletcher-

Shanno).

Dopasowanie funkcji do danych

Błąd dopasowania

funkcji do danych

double err_fit(const matrix

&X,const matrix &Y,double

F(double x,matrix

&par),matrix &par,EsType

es=LSE)

err_fit(X,Y,F,par) Zwraca błąd dopasowania funkcji F o parametrach 'par' do danych (X - zmienna objaśniająca, Y – zmienna

objaśniana). Typ estymacji definiuje parametr 'es', który może przyjmować wartości LSE (najmniejszych

kwadratów) lub MLE (największej wiarygodności).

Wywołanie funkcji dla

zestawu danych

matrix fun_fit(const matrix

&X,double F(double

x,matrix &par),matrix &par)

fun_fit(X,F,par) Zwraca wektor wartości funkcji F dla wektora argumentów 'x' i parametrów 'par'.

Dopasowanie funkcji

do danych metodą

sympleksów

int fits(const matrix

&X,const matrix &Y,double

F(double x,matrix

&par),matrix &par,double

tol,EsType es=LSE)

fits(X,Y,F,par,1e-

9,MLE)

Dopasowuje funkcję F o parametrach 'par' do danych (X - zmienna objaśniająca, Y – zmienna objaśniana).

Stosowana jest metoda sympleksów. Początkowa wartość 'par' powinna znajdować się blisko rozwiązania.

Obliczenia są przeprowadzane z dokładnością 'tol', a wynik jest zwracany w zmiennej 'par'. Typ estymacji

definiuje parametr 'es', który może przyjmować wartości LSE (najmniejszych kwadratów) lub MLE

(największej wiarygodności).

Dopasowanie funkcji

do danych metodą

gradientów

int fitu(const matrix

&X,const matrix &Y,double

F(double x,matrix

&par),double dF(double

x,matrix &par,int

no_diff),matrix

&par,double tol,EsType

es=LSE,EsMethod

fitu(X,Y,F,dF,par,1e-

9,MLE,BFS)

Dopasowuje funkcję F o parametrach 'par' do danych (X - zmienna objaśniająca, Y – zmienna objaśniana).

Stosowana jest metoda gradientów. Wymagana jest znajomość pochodnej funkcji dF. Początkowa wartość

'par' powinna znajdować się blisko rozwiązania. Obliczenia są przeprowadzane z dokładnością 'tol', a wynik

jest zwracany w zmiennej 'par'. Typ estymacji definiuje parametr 'es', który może przyjmować wartości LSE

(najmniejszych kwadratów) lub MLE (największej wiarygodności). Wybrać można metodę 'met': DFP

(Davidon-Fletcher-Powell) lub BFS (Broyden-Fletcher-Shanno).

69

met=DFP)

Dopasowanie funkcji

do danych metodą

złożoną

int fitx(const matrix

&X,const matrix &Y,double

F(double x,matrix

&par),double dF(double

x,matrix &par,int

no_diff),matrix

&par,double tol,EsSpeed

speed=Normal,EsType

es=LSE,EsMethod

met=DFP)

fitx(X,Y,F,dF,par,1e-

9,MLE,BFS)

Dopasowuje funkcję F o parametrach 'par' do danych (X - zmienna objaśniająca, Y – zmienna objaśniana).

Stosowana jest metoda złożona. Wymagana jest znajomość pochodnej funkcji dF. Początkowa wartość 'par'

powinna znajdować się blisko rozwiązania. Obliczenia są przeprowadzane z dokładnością 'tol', a wynik jest

zwracany w zmiennej 'par'. Wybrać można szybkość estymacji 'speed': Slow, Normal, Fast, Fastest; typ

estymacji: LSE (najmniejszych kwadratów) lub MLE (największej wiarygodności); oraz metodę 'met': DFP

(Davidon-Fletcher-Powell) lub BFS (Broyden-Fletcher-Shanno).

Dopasowanie funkcji do danych wielowymiarowych

Błąd dopasowania

funkcji

wielowymiarowej do

danych

double err_fit(const matrix

&X,const matrix &Y,double

F(matrix &x,matrix

&par),matrix &par,EsType

es=LSE)

err_fit(X,Y,F,par) Zwraca błąd dopasowania wielowymiarowej funkcji F o parametrach 'par' do danych (X - zmienne

objaśniające, Y – zmienna objaśniana). Typ estymacji definiuje parametr 'es', który może przyjmować

wartości LSE (najmniejszych kwadratów) lub MLE (największej wiarygodności).

Wywołanie funkcji

wielowymiarowej dla

zestawu danych

matrix fun_fit(const matrix

&X,double F(matrix

&x,matrix &par),matrix

&par)

fun_fit(X,F,par) Zwraca wektor wartości wielowymiarowej funkcji F dla wektora argumentów 'x' i parametrów 'par'.

Dopasowanie funkcji

wielowymiarowej do

danych metodą

sympleksów

int fits(const matrix

&X,const matrix &Y,double

F(matrix &x,matrix

&par),matrix &par,double

tol,EsType es=LSE)

fits(X,Y,F,par,1e-

9,MLE)

Dopasowuje wielowymiarową funkcję F o parametrach 'par' do danych (X - zmienne objaśniające, Y –

zmienna objaśniana). Stosowana jest metoda sympleksów. Początkowa wartość 'par' powinna znajdować

się blisko rozwiązania. Obliczenia są przeprowadzane z dokładnością 'tol', a wynik jest zwracany w zmiennej

'par'. Typ estymacji definiuje parametr 'es', który może przyjmować wartości LSE (najmniejszych

kwadratów) lub MLE (największej wiarygodności).

Dopasowanie funkcji

wielowymiarowej do

int fitu(const matrix

&X,const matrix &Y,double

fitu(X,Y,F,dF,par,1e-

9,MLE,BFS)

Dopasowuje wielowymiarową funkcję F o parametrach 'par' do danych (X - zmienne objaśniające, Y –

zmienna objaśniana). Stosowana jest metoda gradientów. Wymagana jest znajomość pochodnej funkcji dF.

70

danych metodą

gradientów

F(matrix &x,matrix

&par),double dF(matrix

&x,matrix &par,int

no_diff),matrix

&par,double tol,EsType

es=LSE,EsMethod

met=DFP)

Początkowa wartość 'par' powinna znajdować się blisko rozwiązania. Obliczenia są przeprowadzane z

dokładnością 'tol', a wynik jest zwracany w zmiennej 'par'. Typ estymacji definiuje parametr 'es', który może

przyjmować wartości LSE (najmniejszych kwadratów) lub MLE (największej wiarygodności). Wybrać można

metodę 'met': DFP (Davidon-Fletcher-Powell) lub BFS (Broyden-Fletcher-Shanno).

Dopasowanie funkcji

wielowymiarowej do

danych metodą złożoną

int fitx(const matrix

&X,const matrix &Y,double

F(matrix &x,matrix

&par),double dF(matrix

&x,matrix &par,int

no_diff),matrix

&par,double tol,EsSpeed

speed=Normal,EsType

es=LSE,EsMethod

met=DFP)

fitx(X,Y,F,dF,par,1e-

9,MLE,BFS)

Dopasowuje wielowymiarową funkcję F o parametrach 'par' do danych (X - zmienne objaśniające, Y –

zmienna objaśniana). Stosowana jest metoda złożona. Wymagana jest znajomość pochodnej funkcji dF.

Początkowa wartość 'par' powinna znajdować się blisko rozwiązania. Obliczenia są przeprowadzane z

dokładnością 'tol', a wynik jest zwracany w zmiennej 'par'. Wybrać można szybkość estymacji 'speed': Slow,

Normal, Fast, Fastest; typ estymacji: LSE (najmniejszych kwadratów) lub MLE (największej wiarygodności);

oraz metodę 'met': DFP (Davidon-Fletcher-Powell) lub BFS (Broyden-Fletcher-Shanno).

71

 1.10 Sieć neuronowa (neural_net)

Metoda Deklaracja metody Przykład wywołania Opis działania

Deklaracja sieci

neuronowej

neural_net() neural_net nn Zadeklarowanie sieci neuronowej. W przykładzie sieć ma nazwę 'nn'

Tworzenie sieci o

zadanej architekturze

warstw

neural_net(int i,int h,int

ha,int oa)

neural_net

nn(1,2,logistic,linear)

Zadeklarowanie sieci neuronowej, posiadającej 'i' wejść, 'h' neuronów w warstwie ukrytej. Aktywacja
warstwy ukrytej odbywa się za pomocą funkcji 'ha', a aktywacja warstwy wyjściowej za pomocą funkcji 'oa'.
Numery i nazwy funkcji aktywacji:

0 – undefined (nieokreślona)

1 – logistic (
1

1+exp (−x))

2 – tanhyp (tanh (x))

3 – linear (x)

W przykładzie powstaje sieć o jednym wejściu, 2 neuronach ukrytych. Funkcje aktywacji są typu 'logistic'.

Definiowanie wzorców

Definiowanie wzorców

(danych)

void set_patterns(const

matrix &p_in,const matrix

&p_out,int set=0)

nn.set_patterns(x,y,le

arn_set)

Definiowane są wzorce uczące: 'p_in' - wejściowe (zmienne objaśniające), 'p_out' – wyjściowe (zmienna
objaśniana). Wybrać należy zbiór 'set':
0 – learn_set (zbiór uczący)
1 – valid_set (zbiór walidacyjny, pomocniczy przy uczeniu)
2 – test_set (niezależny zbiór testowy)

W przykładzie definiowany jest zbiór uczący dla zmiennych x i zmiennej objaśnianej y.

Liczba wzorców int patterns(int set=0) nn.patterns(learn_set) Liczba wzorców w danych zbiorze 'set'.

Informacja o danych void datainfo() nn.datainfo() Zbiorcza informacja o danych: liczba wzorców we wszystkich zbiorach danych (0, 1 i 2)

72

Inicjalizacja

Wybór funkcji

aktywacji

void set_activ_fun(int

ha=logistic,int oa=logistic)

nn.set_activ_fun(logis

tic,linear)

Wybierane są funkcje aktywacji dla warstwy ukrytej i wyjściowej.

Inicjalizacja void init(double c=0.02) nn.init() Inicjalizacja połączeń przed rozpoczęciem uczenia. Parametr 'c' określa wielkość parametrów losowych.

Prosta inicjalizacja void init_simply(double

c=0.02)

nn.init_simply() Prosta inicjalizacja połączeń przed rozpoczęciem uczenia. Inicjalizowane jest tylko po jednym połączeniu od
każdego wejścia. Parametr 'c' określa wielkość parametrów losowych.

Inicjalizacja

pojedynczego wejścia

void init_single_input(int

v_in,int h,int pos=1,double

c=0.02)

nn.init_single_input(1

0,5,1)

Inicjalizacja połączeń od danego wejścia. Wybiera się numer wejścia 'v_in', liczbę aktywowanych neuronów
ukrytych 'h' i położenie w warstwie ukrytej 'pos'. Parametr 'c' określa wielkość parametrów losowych.

W przykładzie inicjalizowane są połączenia od 10 wejścia do 1, 2, 3, 4 i 5 neuronu ukrytego.

Inicjalizacja do

realizacji funkcji

binarnej

void init_binfun(int v_in,int

pos=1)

nn.init_binfun(10,15) Inicjalizacja realizująca kodowanie binarne. Dotyczy tylko sieci aktywowanych za pomocą funkcji (tanhyp,
linear) i zmiennej zero-jedynkowej na wybranym wejściu. 'v_in' to numer wejścia, 'pos' to pozycja
wykorzystanego neuronu w warstwie ukrytej (wykorzystany jest 1 neuron). Połączenia są ustawiane na
wartości realizujące kodowanie binarne (nie wymagają uczenia).

W przykładzie inicjalizuje się połączenia dla zmiennej nr 10, biegnące do neuronu 15.

Inicjalizacja do

realizacji kodowania

ciągłego

void init_confun(int v_in,int

pos=1)

nn.init_confun(10,15) Inicjalizacja realizująca kodowanie ciągłe funkcją tanh4. Dotyczy tylko sieci aktywowanych za pomocą funkcji
(tanhyp, linear) i zmiennej ciągłej na wybranym wejściu. 'v_in' to numer wejścia, 'pos' to pozycja
wykorzystanego neuronu w warstwie ukrytej (wykorzystany jest 1 neuron). Połączenia są ustawiane na
wartości realizujące kodowanie ciągłe tanh (wymagane jest uczenia).

W przykładzie inicjalizuje się połączenia dla zmiennej nr 10, biegnące do neuronu 15.

Podgląd struktury

Liczba warstw

wejściowych

int size_in() nn.size_in() Zwraca liczbę neuronów wejściowych

Liczba warstw ukrytych int size_hid() nn.size_hid() Zwraca liczbę neuronów ukrytych

Funkcja aktywująca int act_hid() nn.act_hid() Zwraca numer funkcji aktywującej warstwę ukrytą:

73

warstwy ukryte 0 – undefined
1 – logistic
2 – tanhyp
3 – linear

Funkcja aktywująca

warstwę wyjściową

int act_out() nn.act_out() Zwraca numer funkcji aktywującej warstwę wyjściową:

0 – undefined
1 – logistic
2 – tanhyp
3 – linear

Struktura sieci void structure() nn.structure() Wyświetla strukturę sieci:

- layer size – liczba neuronów w warstwie wejściowej, ukrytej i wyjściowej

- activation – funkcje aktywacji (wejście → ukryte, ukryte → wyjście)

- parameters – liczbę niezerowych parametrów dla połączeń (wejście → ukryte, bias → ukryte, ukryte →
wyjście, bias → wyjście)

Manipulacja strukturą

Zmiana rozmiaru sieci void resizec(int i_new,int

h_new)

nn.resizec(10,5) Zmiana liczby wejść z bieżącej na 'i_new' oraz liczby neuronów ukrytych z bieżącej na 'h_new'.
Zachowywane są wartości połączeń.

Dodanie neuronu w

warstwie ukrytej

void add_hid(int v_in,int

pos,double c=0.02)

nn.add_hid(8,5) Dodanie neuronu w warstwie ukrytej. Połączenie od wejścia 'v_in' do pozycji 'pos'. Parametr 'c' określa
wielkość parametrów losowych.

Liczba używanych

neuronów ukrytych

int used_hid() nn.used_hid() Zwraca liczbę używanych neuronów w warstwie ukrytej. Neuron jest używany, jeśli jest aktywowany przez
wcześniejszą warstwę.

Przesunięcie neuronów

w warstwie ukrytej

void shift_hid(int s) nn.shift_hid(10) Neurony w warstwie ukrytej są przesuwane o 's' pozycji.

Łączenie dwóch sieci void merge(neural_net

&n1,neural_net

&n2,double c1=0.5,double

c2=0.5,double c0=0.0)

nn.merge(n1,n2) Łączenie sieci 'n1' i 'n2'. Otrzymana sieć daje wyniki będące kombinacją liniową składowych:

value(x)=c1*n1.value(x)+c2*n2.value(x)+c0

74

Dołączenie sieci do

istniejącej sieci

void join(neural_net

&n1,double c1=1.0)

nn.join(n1) Dołączenie sieci 'n1' do bieżącej sieci. Po dołączeniu bieżąca sieć daje wyniki będące kombinacją liniową
sieci przed dołączeniem i sieci dołączanej:

value(x)=value(x)+c1*n1.value(x)

Przemnożenie wag

drugiej warstwy przez

stałą

void w2b2_mul(double c) nn.w2b2_mul(2.0) Połączenia od warstwy ukrytej do wyjściowej są mnożone przez stałą 'c'.

Przykładowo, sieć będzie dawać wyniki 2 razy większe.

Dodanie wartości do

biasu drugiej warstwy

void b2_plus(double c) nn.b2_plus(8.5) Bias warstwy wyjściowej jest zwiększany o stałą 'c'.

Przykładowo, sieć będzie dawać wyniki zwiększone o 8.5.

Wypełnienie

nieużywanych połączeń

losowymi wartościami

void refill(double c) nn.refill(0.02) Nieużywane połączenia są inicjowane losowymi wartościami, o których wielkości decyduje stała 'c'.

Losowa przebudowa struktury

Dodanie jednego

połączenia w pierwszej

warstwie

void rand_add_w1(double

c)

nn.rand_add_w1(0.02

)

Dodawane jest losowo połączenie w pierwszej warstwie

Dodanie jednego

połączenia w drugiej

warstwie

void rand_add_w2(double

c)

nn.rand_add_w2(0.02

)

Dodawane jest losowo połączenie w drugiej warstwie

Dodanie połączenia w

obu warstwach

void

rand_add_w2w1(double c)

nn.rand_add_w2w1(0

.02)

Dodawane jest losowo połączenie w pierwszej i w drugiej warstwie

Usunięcie jednego

połączenia w pierwszej

warstwie

void rand_del_w1() nn.rand_del_w1() Usuwane jest losowo połączenie w pierwszej warstwie

Usunięcie jednego

połączenia w drugiej

void rand_del_w2() nn.rand_del_w2() Usuwane jest losowo połączenie w drugiej warstwie

75

warstwie

Redukcja połączeń sieci void reduction(double

c=0.02)

nn.reduction(0.01) Połączenia sieci o wadze mniejszej co do wartości bezwzględnej od 'c' są zerowane

Aktywacja połączeń

nieaktywnych

void rand_fill0(double

c=0.02)

nn.rand_fill0(0.01) Połączenia o wartości zero są aktywowane wartościami losowymi z zakresu [0,c]

Dopasowanie sieci do danych

Dopasowanie sieci do

danych

int fit(int iter=100,int

grad_desc=1,int

lev_marq=1,int layer_1=1)

nn.fit() Sieć jest dopasowywana do danych. Znajdowane jest minimum funkcji błędu dla prób bootstrapowych.
Parametry funkcji:

- iter – liczba iteracji (domyślnie 100)

- grad_desc – metoda gradientu sprzężonego (domyślnie włączona)

- lev_marq – metoda Levenberga-Marquardta (domyślnie włączona)

- layer_1 – modyfikacja połączeń w pierwszej warstwie (domyślnie włączona)

Uczenie sieci int learn(int

min_iter=100,int

max_iter=1000,int

slow_steps=10,double

tol_err=1e-8,int

grad_desc=1,int

lev_marq=1,int

layer_1=1,int regul=1)

nn.learn() Sieć jest uczona. W wyniku otrzymywany jest model o właściwościach generalizujących. Parametry funkcji:

- min_iter – minimalna liczba iteracji (domyślnie 100)

- max_iter – maksymalna liczba iteracji (domyślnie 1000)

- slow_steps – liczba wolnych kroków, po których uczenie zostaje przerwane (domyślnie 10)

- tol_err – dokładność uczenia (domyślnie 1e-8)

- grad_desc – metoda gradientu sprzężonego (domyślnie włączona)

- lev_marq – metoda Levenberga-Marquardta (domyślnie włączona)

- layer_1 – modyfikacja połączeń w pierwszej warstwie (domyślnie włączona)

- regul – czy ma być zastosowana regularyzacja (domyślnie tak)

76

Uczenie z równoczesną

walidacją

int learn_and_valid(int

min_iter=100,int

max_iter=1000,int

slow_steps=10,double

tol_err=1e-8,int

grad_desc=1,int

lev_marq=1,int layer_1=1)

nn.learn_and_valid() Sieć jest uczona i jednocześnie walidowana. W wyniku otrzymywany jest model o właściwościach
generalizujących. Parametry funkcji są analogiczne jak dla 'learn', z tym że nie ma parametru regularyzacji.
(Metoda niepolecana, ponieważ walidacja niedostatecznie zabezpiecza przed przeuczeniem.)

Resetowanie procesu

uczenia

void reset() nn.reset() Proces uczenia jest resetowany

Miary dopasowania

Błąd dopasowania double error(int set=0) nn.error(0) Zwraca błąd dopasowania dla zbioru o numerze 'set'

Korelacja wartości

obserwowanych i

predykowanych

double corr(int set=0) nn.corr(0) Zwraca wartość korelacji wartości obserwowanych i predykowanych dla zbioru o numerze 'set'

Skuteczność predykcji double AR(int set=0) nn.AR(0) Zwraca wskaźnik AR dla zbioru o numerze 'set'

Obliczanie wartości

Wartość predykcji double value(const sparse

&x)

nn.value(x) Zwraca wartość predykcji sieci dla wejścia 'x'

Wartość predykcji dla

wzorców

matrix values(int set=0) nn.values(0) Zwraca zestaw wartości predykcji sieci dla zbioru wzorców o numerze 'set'

Zapis i odczyt

Zapis sieci void save(Text name) nn.save("siec.txt") Zapis sieci do pliku o nazwie 'name'

Wczytanie sieci void load(Text name) nn.load("siec.txt") Wczytanie sieci z pliku o nazwie 'name'

77

Wczytanie struktury

sieci

void load_structure(Text

name)

nn.load_structure("sie

c.txt")

Wczytanie struktury sieci z pliku o nazwie 'name'. Połączenia są inicjowane losowymi wartościami.

Skasowanie sieci void free() nn.free() Skasowanie sieci. Zwalniana jest pamięć przydzielona na ten obiekt.

78

 1.11 Wykres (gplot)

Metoda Deklaracja metody Przykład wywołania Opis działania

Deklaracja obiektu

wykres

gplot() gplot gp Deklarowana jest zmienna typu wykres

Deklaracja obiektu

wykres i otworzenie

pliku wykresu do edycji

 gplot(Text name,Text

path=Text())

gplot gp("sample") Deklarowana jest zmienna typu wykres i otwierany jest plik o podanej nazwie do edycji (rysowania).
Opcjonalnie można podać ścieżkę do katalogu, w którym wykres będzie zapisany. Domyślnie wybierany jest
bieżący katalog.

Po tej instrukcji można rozpocząć rysowanie.

Otworzenie pliku

wykresu do edycji

 void open(Text name,Text

path=Text())

gp.open("sample2") Otwierany jest plik wykresu.

Po tej instrukcji można rozpocząć rysowanie.

Zamknięcie pliku

wykresu

 void close() gp.close() Zamykany jest plik wykresu.

Ta instrukcja kończy rysowanie.

Właściwości obiektu wykres

Nazwa pliku wykresu Text getname() gp.getname() Zwracana jest nazwa pliku wykresu

Sprawdzenie czy plik

jest otwarty do edycji

int isopen() gp.isopen() Zwracana jest wartość 1 (true), jeśli otwarto plik do edycji. Albo 0 (false) - w przeciwnym przypadku.

Parametry wykresu

Wykres wielokrotny void multiplot(int set=1,int

rows=1,int cols=2)

gp.multiplot(1,2,2) Włączenie/wyłączenie trybu wielu wykresów (‘set’ równe 1 oznacza włączenie, a równe 0 wyłączenie).
Można wybrać liczbę wykresów w pionie (rows) i poziomie (cols).

W podanym przykładzie włączony zostaje tryb z czterema wykresami na jednej ilustracji (2x2).

Tytuł void title(Text t) gp.title("Tytuł Wykres jest tytułowany

79

wykresu")

Styl void style(Text t) gp.style("fill solid

border -1")

Ustawienie stylu rysowania

Szerokość słupka void boxwidth(double d) gp.boxwidth(5) Ustawienie szerokości słupków dla wykresów, które zawierają ten element.

Zakresy osi void xrange(double

d1,double d2)

void yrange(double

d1,double d2)

void zrange(double

d1,double d2)

gp.xrange(-10,10) Wybór zakresu dla osi X, Y i Z

Tytuły osi void xlabel(Text t)

void ylabel(Text t)

void zlabel(Text t)

gp.xlabel("Oś X") Dodawanie podpisów osi X, Y i Z

Legenda void key(Text t) gp.key("bot right") Włączenie legendy i wybór jej położenia

Próbkowanie void samples(double d) gp.samples(100) Liczba próbek rysowanej funkcji

Próbkowanie ISO void isosamples(double d) gp.isosamples(10) Gęstość siatki dla wykresów 3D

Tryb parametryczny void parametric(int set) gp.parametric(1) Włączenie/wyłączenie rysowania funkcji parametrycznych (‘set’ równe 1 oznacza włączenie, a równe 0
wyłączenie)

Kąt widzenia void view(double

d1,double d2)

gp.view(65,55) Wybór kąta widzenia dla wykresów 3D

Pojedyncza etykieta void label(int i,Text

t,double d1,double d2)

gp.label(1,"Jakiś

napis”,200,100)

Dodaje dowolny napis w miejscu o współrzędnych (d1,d2). Parametr ‘i’ umożliwia numerowanie etykiet.

80

Obiekt void object(Text t) gp.object("polygon

from 10,10 to 20,20 fc

rgb 'orange'")

Umożliwia rysowanie obiektów (prostokątów, kół, elips, wielokątów)

Typ znaczników osi void xtics(Text t)

void ytics(Text t)

void ztics(Text t)

gp.xtics("rotate by -

90")

Umożliwia ustawienie sposobu wyświetlania znaczników osi X, Y i Z.

Margines void bmargin(double d) gp.bmargin(10) Ustawienie szerokości dolnego marginesu

Reset void reset() gp.reset() Zresetowanie wykresu. Przywracane są wszystkie standardowe ustawienia.

Rysowanie wykresu

Wykres danych z pliku

lub funkcji

zdefiniowanej napisem

void plot(Text data1,Text

modif1=Text(),Text

title1=Text(),Text

style1=Text(),…)

gp.plot("dane_wykres

u.txt","1:2","Zmienna

1","boxes",

"~","1:3","Zmienna

2","boxes")

gp.plot("2.5*sin(x)+x/

10.0","","Wykres

funkcji")

Rysowanie wykresu 2D ma podstawie danych z pliku tekstowego lub funkcji zdefiniowanej napisem.
Parametry:

- data1 – nazwa pliku lub funkcja

- modif1 – wybór zakresu kolumn

- title1 – tytuł krzywej

- style1 – styl rysowania krzywej

Można zdefiniować do pięciu niezależnych źródeł danych lub funkcji, posiadających identyczny zestaw
parametrów jak opisane wyżej. Istnieje również funkcja ‘splot’, mająca identyczne parametry, służąca do
rysowania powierzchni (wykres 3D).

W pierwszym przykładzie rysunek korzysta z pliku „dane_wykresu.txt”. Rysowany jest wykres pudełkowy dla
danych x z kolumny 1 i danych y z kolumny 2. Krzywa otrzymuje opis „Zmienna 1”. Rysowana jest także
druga krzywa na podstawie danych z tego samego pliku (znak ~ oznacza powtórzenie źródła danych). Dane x

81

są brane z kolumny 1, a dane y z kolumny 3. Krzywa otrzymuje opis „Zmienna 2”.

W drugim przykładzie rysowana jest funkcja 2.5*sin(x)+x/10. Krzywa otrzymuje opis „Wykres funkcji”.

Wykres danych z tabeli void plot(table tab1,Text

modif1=Text(),Text

title1=Text(),Text

style1=Text(),…)

gp.plot(tabela,"1:2","Z

mienna 1","boxes",

"~","1:3","Zmienna

2","boxes")

Rysowanie wykresu 2D na podstawie danych z podanej tabeli.

Funkcjonalność identyczna jak funkcji ‘plot’ rysującej na podstawie danych z pliku tekstowego.

‘Splot’ tworzy wykres 3D.

Wykres danych z

macierzy

void plot(matrix mat1,Text

modif1=Text(),Text

title1=Text(),Text

style1=Text(),…)

gp.plot(macierz,"1:2",

"Zmienna 1","boxes",

"~","1:3","Zmienna

2","boxes")

Rysowanie wykresu 2D na podstawie danych z podanej macierzy.

Funkcjonalność identyczna jak funkcji ‘plot’ rysującej na podstawie danych z pliku tekstowego.

‘Splot’ tworzy wykres 3D.

Inne instrukcje

Ustawienie void set(Text t) gp.set("key bot

right\n")

Umożliwa ustawienie dowolnego parametru wykresu

Definicja void define(Text t) gp.define

("min(a,b)=(a<=b)*a+(

a>b)*b")

Umożliwia zdefiniowanie funkcji, wykorzystywanej na wykresie.

Instrukcja void inst(Text t) gp.inst("set xdata

time")

Wywołanie dowolnej instrukcji gnuplot.

82

Instrukcja otwarta void instc(Text t) gp.instc("plot

‘dane_wykresu.txt’

1:2,")

Wywołanie dowolnej instrukcji gnuplot bez kończenia wiersza. Instrukcja otwarta umożliwia kontynuowanie
instrukcji gnuplot w następnej linii programu.

Odstęp void sep(char c='-',int l=70) gp.sep(‘*’,30) Dodanie separatora do kodu skryptu

Koniec linii void endl(int n=1) gp.endl() Znak końca wiersza

Komentarz void comment(Text t) gp.comment("Jakiś

komentarz")

Komentarz skryptu gnuplot

Komentarz specjalny void speccom(Text t,char

c='-',int l=70)

gp.speccom("Jakiś

komentarz")

Komentarz skryptu wyróżniony liniami separującymi

Pauza void pause(int time=-1,Text

info="Hit return to

continue")

gp.pause() Zatrzymuje skrypt gnuplot po wyświetleniu wykresu. Można wybrać czas (-1 oznacza oczekiwanie na
kliknięcie myszką). W okienku informacyjnym wyświetlany jest komunikat zdefiniowany przez parametr
‘info’.

83

 1.12 Raport HTML (html)

Metoda Deklaracja metody Przykład wywołania Opis działania

Deklaracja obiektu

raport

html(Text title="HL++

html",Text

description="Html created

by HL++",Text

keywords="HL++")

html raport Deklarowana jest obiekt typu raport HTML.

Ustawienie koloru tła void background(Text color) raport.backgroundcolo

r("blue")

Ustawiane jest tło strony.

Dodanie zakładki void tab(Text name) raport.tab("Pierwsza

zakładka")

Dodawanie nowej zakładki do raportu. Raport musi mieć co najmniej jedną zakładkę.

Jeżeli jest więcej niż 1 zakładka, to u góry strony automatycznie zostanie wygenerowany pasek nawigacji
między zakładkami.

Właściwości tekstu

Klasa właściwości

tekstu

class text_properties

{

 public:

 int bold,

 italic,

 underline,

 font_size; znakow

 Text font_color,

 font_face;

 text_properties();

};

text_properties

wlasciwosci_tekstu

Klasa definująca właściwości tekstu umieszczanego w raporcie za pomocą metody add_text. Każdy
umieszczany tekst ma własne właściwości, takie jak:

- pogrubienie (bold)

- kursywa (italic)

- podkreślenie (underline)

- wielkość znaków (font_size)

- kolor znaków (font_color)

- rodzaj czcionki (font_face)

Po utworzeniu zmiennej text_properties te właściwości przyjmują wartości domyślne (zwykły tekst), ale

84

można je zmieniać jak w przykładzie poniżej:

text_properties wlasciwosci_tekstu;

wlasciwosci_tekstu.bold=1;

wlasciwosci_tekstu.size=20;

Właściwości tabeli

Klasa właściwości

tabeli

class table_properties

{

 public:

 Text captition,

 captition_align,

 width,

 height,

 align,

 bgcolor,

 names_color;

 int col_names,

 row_names,

 border,

 cellpadding,

 cellspacing;

 table_properties();

};

table_properties

wlasciwosci_tabeli

Klasa definująca właściwości tabel umieszczanych w raporcie za pomocą metody add_table. Każda
umieszczana tabela ma własne właściwości, takie jak:

- tytuł (captition)

- położenie tytułu (captition_align)

- szerokość w pikselach lub % (width)

- wysokość w pikselach lub % (height)

- wyrównanie względem tekstu (align)

- kolor tła (bgcolor)

- kolor wiersza z nazwami kolumn (names_color)

- wybór czy pokazywać nazwy kolumn (col_names)

- wybór czy pokazywać nazwy wierszy (row_names)

- grubość zewnętrznej ramki w pikselach (border)

- szerokość marginesów poziomych i pionowych (cellpadding)

- szerokość odstępu między sąsiednimi komórkami (cellspacing)

Po utworzeniu zmiennej table_properties te właściwości przyjmują wartości domyślne, ale można je
zmieniać jak w przykładzie poniżej:

table_properties wlasciwosci_tabeli;

85

wlasciwosci_tabeli.captition="Tabela 1. Przykładowa";

wlasciwosci_tabeli.row_names=0;

Dodawanie treści

Dodanie rozdziału void chapter(Text

name,const text_properties

&p)

raport.chapter("Rozdz

iał 1",

wlasciwosci_tekstu)

Do raportu dodawany jest nowy rozdział. Tytuł rozdziału ma podane wlasciwosci_tekstu.

Dodawanie rozdziałów powoduje automatyczne utworzenie spisu treści na pasku nawigacyjnym z lewej
strony raportu.

Dodanie tekstu void htext(Text t,const

text_properties &p)

raport.htext("Jakiś

napis",wlasciwosci_te

kstu)

Do raportu dodawany jest tekst o podanych właściwościach.

Dodanie paragrafu void paragraph(Text t,const

text_properties &p,Text

align="left")

raport.paragraph("Jaki

ś

napis",wlasciwosci_te

kstu)

Do raportu dodawany jest tekst w paragrafie o podanych właściwościach. Po kliknięciu w paragraf tekst
może być dynamicznie modyfikowany.

Dodanie ilustracji void image(Text name,Text

dir="",Text align="left",int

width=600,int height=400)

raport.image("obraze

k.jpg")

Do raportu dodawana jest ilustracja (obraz).

Dodanie odwołania void href(Text name,Text

dir="",Text

description="reference",Te

xt image="")

raport.href("rozdzial2.

html")

Do raportu dodawane jest odwołanie wewnętrzne lub zewnętrzne.

Dodanie tabeli void htable(const table

&tab,const

table_properties &p)

void htable(const table

&tab,const matrix

&conv,const

raport.htable(tabela,

wlasciwosci_tabeli)

raport.htable(tabela,c

(2,2,0,1),wlasciwosci_

tabeli)

Do raportu dodawana jest tabela o podanych właściwościach. Opcjonalny parametr 'conv' definiuje sposób
prezentacji liczb. Jest to wektor o długości odpowiadającej liczbie kolumn w tabeli. Każda wartości (liczba
całkowita) definiuje sposób prezentacji w kolejnych kolumnach. Liczby dodanie wskazują, że liczby w
kolumnie mają być wyświetlone jako liczby rzeczywiste o zadanej dokładności po przecinku. Wartość 0
wskazuje, że mają być wyświetlane liczby całkowite. Wartości ujemne wskazują, że mają być wyświetlane
wartości procentowe o zadanej dokładności po przecinku.

86

table_properties &p)

Dodanie macierzy void hmatrix(const matrix

&mat,const matrix

&conv,const

table_properties &p)

raport.hmatrix(macier

z,c(2,3,6),wlasciwosci_

tabeli)

Do raportu dodawana jest macierz. Parametr 'conv' definiuje sposób prezentacji liczb (tak samo jak dla

funkcji add_table).

Dodanie JavaScriptu void js(Text name,Text

dir="",int width=600,int

height=400)

raport.js("wykres_gpl

ot.js")
Do raportu dodawany jest dowolny JavaScript. JavaScriptem może być wykres utworzony za
pomocą gplot, jeżeli ustawi się właściwości pliku wynikowego: set terminal canvas.

Dodanie separatora void endline(int n=1) raport.endline() Do raportu dodawane są linie odstępu.

Inne instrukcje

Czyszczenie raportu void clear() raport.clear() Obiekt raport jest czyszczony. Powstaje pusty raport.

Zapisanie raportu void save(Text dir,Text

name)

raport.save("","raport

.html")

Raport zapisywane jest na dysku w zadanej lokalizacji i pod określoną nazwą.

87

 1.13 Symulacje i kwantyle (simulation, quantiles)

Metoda Deklaracja metody Przykład wywołania Opis działania

Deklaracja obiektu

symulacje

simulation() simulation s Tworzony jest pusty obiekt symulacje.

Deklaracja obiektu z

parametrami

histogramu

simulation(double

hist_min,double

hist_max,int his_num=20)

simulation s(-

4.0,4.0,50)

Tworzony jest pusty obiekt symulacje. Zdefiniowane zostają parametry histogramu: minimalna wartość
(hist_min), maksymalna wartość (hist_max) i liczba przedziałów (hist_num). Domyślnie jest 20 przedziałów
histogramu.

Resetowanie symulacji void reset() s.reset() Resetowanie symulacji. Obiekt symulacji jest przywracany do stanu początkowego, gdy liczba obserwacji
wynosi 0.

Dodawanie obserwacji void add(double e) s.add(normal_sample(

0.0,1.0,seed))

Do symulacji dodawana jest jedna obserwacja. W podanym przykładzie jest to liczba z rozkładu normalnego
N(0,1). Funkcje losujące liczby z różnych rozkładów są dostępne w biblitece prob.hpp. Punkt startowy
generatora losowego (tzw. ziarno) można zadeklarować tak:

int seed[1]={10};

lub

int seed[1]={time(0)};

W pierwszym przypadku ziarno jest deterministyczne (równe 10), w drugim przypadku zależy od czasu
uruchomienia programu.

Wczytanie obiektu void load(Text name) s.load("symul.dat") Obiekt symulacje jest wczytywany z pliku o podanej nazwie.

Zapisanie obiektu void save(Text name) s.save("symul.dat") Obiekt symulacje jest zapisywany do pliku o podanej nazwie.

Kumulowanie symulacji void operator +=(const

simulation &s)

s+=s2; Symulacje z dwóch obiektów są sumowane w pierwszym z nich. W podanym przykładzie do obiektu 's' są
dodawane wszystkie symulacje zgromadzone w obiekcie 's2'.

88

Wyniki symulacji

Liczba symulacji long length() s.length() Zwracana jest liczna wykonanych symulacji.

Najmniejsza wartość double min() s.min() Zwracana jest wartość najmniejsza.

Największa wartość double max() s.max() Zwracana jest wartość największa.

Zakres double range() s.range() Zwracany jest zakres wartości (tj. maksimum - minimum).

Suma double sum() s.sum() Zwracana jest suma wartości.

Średnia arytmetyczna double mean() s.mean() Zwracana jest średnia arytmetyczna.

Średnia geometryczna double gmean() s.gmean() Zwracana jest średnia geometryczna wartości dodatnich.

Średnia harmoniczna double hmean() s.hmean() Zwracana jest średnia harmoniczna wartości różnych od 0.

Dominanta double mode() s.mode() Zwracana jest wartość najczęstsza.

Wariancja double var() s.var() Zwracana jest variancja rozkładu.

Odchylenie

standardowe

double stdev() s.stdev() Zwracane jest odchylenie standardowe.

Skośność double skewness() s.skewness() Zwracana jest skośność.

Kurtoza double kurtosis() s.kurtosis() Zwracana jest kurtoza.

Histogram matrix hist() s.hist() Zwracana jest macierz z histogramem rozkładu.

Obliczanie kwantyli:

Metoda Deklaracja metody Przykład wywołania Opis działania

89

Deklaracja obiektu

kwantyle

quantiles(double p=0.5) quantiles q(0.3) Deklarowana jest obiekt kwantyle. Obliczany będzie kwantyl 'p' (domyślnie kwantyl 0.5, czyli mediana).

W podanym przykładzie obiekt będzie obliczał kwantyl 0.3.

Resetowanie obiektu void reset(double p) q.reset(0.4) Resetowanie symulacji służących do wyliczenia kwantyla. Obiekt 'kwantyle' jest przywracany do stanu
początkowego, gdy liczba obserwacji wynosi 0. Wymagane jest podanie, jaki kwantyl będzie następnie
obliczany (parametr 'p').

Dodawanie obserwacji void add(double e) q.add(normal_sample(

0.0,1.0,seed))

Do symulacji dodawana jest jedna obserwacja. W podanym przykładzie jest to liczba z rozkładu normalnego
N(0,1). Więcej informacji patrz: funkcja add w obiekcie „simulation”.

Wynik double result() q.result() Obliczany jest kwantyl rozkładu.

Dystrybuanta double cdf(double x) q.cdf(0.0) Obliczana jest wartość dystrybuanty w zadanym punkcie położonym w pobliżu wyznaczonego kwantyla.
Obiekt kwantyle nie gromadzi wszystkich obserwacji, a tylko te w pobliżu szukanego wyniku. Jeżeli wartość x
będzie odległa od wyniku, to pojawi się komunikat ostrzegawczy, że wartości dystrybuanty nie można
wyznaczyć. Ta funkcja może służyć np. do sprawdzenia, czy wynik otrzymany funkcją result() jest prawidłowy:

int seed[1]={1};

quantiles q(0.5);
for (long n=1; n<=1000000; n++) q.add(normal_sample(0.0,1.0,seed));

double mediana=q.result();

cout<<"mediana="<<mediana<<endl;

cout<<"cdf(mediana)="<<q.cdf(mediana)<<endl;

Oczekiwany wynik działania programu przy dużej liczbie symulacji to:

mediana=0.0
cdf(mediana)=0.5

Funkcja jest wykorzystywana przez obiekt „quantiles2”, kumulujący obiekty „quantiles” (patrz poniżej).

Wczytanie obiektu void load(Text name) q.load("kwantyl1.dat") Obiekt kwantyle jest wczytywany z pliku o podanej nazwie.

90

Zapisanie obiektu void save(Text name) q.save("kwantyl1.dat") Obiekt kwantyle jest zapisywany do pliku o podanej nazwie.

Kumulowanie obiektów kwantylowych

Deklaracja obiektu

sumującego zestawy

symulacji

quantiles2(int

max_size=10)

quantiles2 qq(2) Tworzony jest obiekt, w którym można zsumować, wiele obiektów kwantylowych (typu quantiles). Parametr
max_size określa, ile maksymalnie obiektów będzie zsumowanych.

Resetowanie obiektu void reset(int max_size=10) qq.reset() Resetowanie obiektu. Obiekt 'kwantyle2' jest przywracany do stanu początkowego, gdy nie zawiera,
żadnych danych. Można zmienić maksymalną liczbę obiektów składowych (parametr 'max_size').

Kumulowanie symulacji void operator +=(const

quantiles &q)

qq+=q Symulacje z obiektów „kwantyle” są sumowane w obiekcie „kwantyle2”. W podanym przykładzie do obiektu
'qq' są dodawane wszystkie symulacje zgromadzone w obiekcie 'q'.

Wynik double result() qq.result() Obliczany jest kwantyl rozkładu.

Dystrybuanta double cdf(double x) qq.cdf() Obliczana jest wartość dystrybuanty w zadanym punkcie położonym w pobliżu wyznaczonego kwantyla.
Jeżeli wartość x będzie odległa od wyniku, to pojawi się komunikat ostrzegawczy, że wartości dystrybuanty
nie można wyznaczyć.

Liczba wszystkich

symulacji

long simulations_all() qq.simulation_all() Liczba wszystkich symulacji w kumulowanych obiektach kwantylowych.

Liczba użytych

symulacji

long simulations_used() qq.simulation_used() Liczba symulacji w kumulowanych obiektach kwantylowych użytych do obliczania wyników (najczęściej
równa liczbie wszystkich symulacji).

91

 1.14 Język R (rrun, rcppconv)

Metoda Deklaracja metody Przykład wywołania Opis działania

Domyślne środowisko R RInside RE RE Aby wygodnie korzystać z R, w głównym pliku projektu (np. main.cpp) należy zadeklrować zmienną RE poza
programem głównym. Zmienna RE będzie dostępna we wszystkich plikach projektu. Sposób deklaracji:

Rinside RE;

int main()
{
 // kod programu
}

Tekst typedef Rcpp::String RText RText t Typ tekst w Rcpp. Zmienna tego typu może być przekazana do środowiska R.

Data typedef Rcpp::Date RDate RDate d Typ data w Rcpp. Zmienna tego typu może być przekazana do środowiska R.

Macierz typedef

Rcpp::NumericMatrix

RMatrix

RMatrix m Typ macierz w Rcpp. Zmienna tego typu może być przekazana do środowiska R.

Wektor typedef

Rcpp::NumericVector

RVector

RVector v Typ wektor w Rcpp. Zmienna tego typu może być przekazana do środowiska R.

Tabela typedef Rcpp::DataFrame

RTable

RTable t Typ tabela w Rcpp. Zmienna tego typu może być przekazana do środowiska R.

Tabele w R nazywają się data.frame.

Typ dowolny typedef RInside::Proxy - Typ dowolny. Funkcja R zwraca wynik typu RProxy, który jest następnie konkretyzowany. Patrz pomoc do
funkcji „RProxy eval(Text)”.

92

RProxy

Konwertery obiektów

Na tekst C++ Text ctext(const RText &) ctext(tekst_R) Konwertuję zmienną tekstową z R na zmienną tekstową C++.

Na tekst R RText rtext(const Text &) rtext(tekst_C) Konwertuję zmienną tekstową z C++ na zmienną tekstową R.

Na datę C++ date cdate(const RDate &) cdate(data_R) Konwertuję zmienną data z R na zmienną data C++.

Na datę R RDate rdate(const date &) rdate(data_C) Konwertuję zmienną data z C++ na zmienną data R.

Na macierz C++ matrix cmatrix(const

RMatrix &)

cmatrix(macierz_R) Konwertuję macierz z R na macierz C++.

Na macierz R RMatrix rmatrix(const

matrix &)

rmatrix(macierz_C) Konwertuję macierz z C++ na macierz R.

Na wektor C++ matrix cvector(const

RVector &)

cvector(wektor_R) Konwertuję wektor z R na wektor C++.

Na wektor R RVector rvector(const

matrix &)

rvector(wektor_C) Konwertuję wektor z C++ na wektor R.

Na tabelę C++ table ctable(const RTable

&)

ctable(tabela_R) Konwertuję tabelę z R (data.frame) na tabelę C++.

Na tabelę R RTable rtable(const table

&)

rtable(tabela_C) Konwertuję tabelę z C++ na tabelę R (data.frame).

Przesyłanie zmiennych do środowiska R

Przesyłanie zmiennych

do R

void var(string,int)

void var(string,double)

void var(string,const Text

&)

var("n",n)

var("x",x)

var("nazwa",nazwa)

var("data1",data1)

Za pomocą funkcji var można przesłać zmienną z C++ do środowiska R. Nazwa zmiennej w R będzie taka jak
pierwszy argument funkcji (string), a wartość taka jak drugi argument.

W podanych przykładach nazwy zmiennych w R są takie same jak w C++, jednak nie jest to wymagane. To
znaczy można napisać np.:

var("x",y)

93

void var(string,const date

&)

void var(string,const matrix

&)

void var(string,const table

&)

var("A",A)

var("tab",tab)

Użycie zmienne w R use(name) use(x) Zmienna C++ name staje się widoczna w R pod tą samą nazwą.

Deklarowanie zmiennej

w R

let(name1,name2) let(x,y) W R powstaje zmienna name1, odpowiadająca zmiennej C++ name2.

Uruchamianie kodu R

Uruchomienie kodu void evalQ(Text) evalQ("print(2)") Funkcja uruchamia podany kod R. Działania są wykonywane w środowisku RE.

Uruchomienie kodu

zwracającego wynik

RProxy eval(Text) RVector

wektorR=eval("rep(1,

10)")

Funkcja uruchamia podany kod R. Działania są wykonywane w środowisku RE.

Wynik może być typu: int, double, RText, RDate, RMatrix, RVector lub RTable.

Uruchomienie kodu z

pliku

void sourceQ(Text)

void sourceQ(RInside

&,Text)

sourceQ("funkcja.R")

sourceQ(R1,"funkcja.R

")

Funkcja uruchamia kod R z pliku o podanej nazwie. Domyślnie działania są wykonywane w środowisku RE,
ale mogą być wykonywane w innych instancjach tego środowiska (jak w drugim przykładzie).

Uruchomienie kodu

zwracającego wynik z

pliku

RProxy source(Text)

RProxy source(RInside

&,Text)

RMatrix

macierzR=source("fun

kcja2.R")

RTable

tabelaR=source(R1,"fu

nkcja3.R")

Funkcja uruchamia kod R z pliku o podanej nazwie. Domyślnie działania są wykonywane w środowisku RE,
ale mogą być wykonywane w innych instancjach tego środowiska (jak w drugim przykładzie).

Wynik może być typu: int, double, RText, RDate, RMatrix, RVector lub RTable.

94

Makra uruchamiające proc(name)

fun(name)

run(name)

proc(print(2))

fun(rep(1,10))

run(funkcja2)

Makra pozwalające uruchamiać kod z pominięciem cudzysłowów i rozszerzeń pliku (bardziej czytelne).

	1 Spis funkcji HL++
	1.1 Funkcje elementarne (elfun)
	1.2 Tekst (text)
	1.3 Data (date)
	1.4 Wektor (vector)
	1.5 Dane (data)
	1.5.1 Deklaracja zmiennej
	1.5.2 Wymiary obiektu
	1.5.3 Dostęp do obiektu
	1.5.4 Wyszukiwanie
	1.5.5 Zmiana rozmiaru i kształtu
	1.5.6 Sprawdzanie zawartości
	1.5.7 Tworzenie wektorów
	1.5.8 Zmiana zawartości
	1.5.9 Kopiowanie
	1.5.10 Wybieranie i wstawianie
	1.5.11 Łączenie
	1.5.12 Operacje zmiany orientacji
	1.5.13 Zamiana wierszy, kolumn
	1.5.14 Pozostawianie wybranych wierszy, kolumn
	1.5.15 Operatory
	1.5.16 Sortowanie
	1.5.17 Operacje na zbiorach
	1.5.18 Operacje plikowe
	1.5.19 Wyświetlanie, kasowanie

	1.6 Macierz (matrix)
	1.6.1 Deklaracja zmiennej
	1.6.2 Konwersja
	1.6.3 Tworzenie
	1.6.4 Wypełnianie
	1.6.5 Podstawowe operacje
	1.6.6 Operacje statystyczne
	1.6.7 Ogólne podsumowanie
	1.6.8 Operacje dwuargumentowe
	1.6.9 Operatory
	1.6.10 Algebra liniowa
	1.6.11 Regresja liniowa i inne metody numeryczne
	1.6.12 Operacje na plikach binarnych

	1.7 Tabela (table)
	1.7.1 Deklaracja zmiennej
	1.7.2 Konwersja
	1.7.3 Wybór etykiet
	1.7.4 Tabela testowa
	1.7.5 Operacje wyboru i faktorowe
	1.7.6 Sortowanie
	1.7.7 Tworzenie bazy do modelowania

	1.8 Macierz rzadka (sparse)
	1.9 Metody numeryczne (numproc)
	1.10 Sieć neuronowa (neural_net)
	1.11 Wykres (gplot)
	1.12 Raport HTML (html)
	1.13 Symulacje i kwantyle (simulation, quantiles)
	1.14 Język R (rrun, rcppconv)

