Pomoc do HL++ v.2.4

Spis tresci

Y 0T (0T T L P 4
1.1 Funkcje elementarne (E1fUN) ...ttt e e et e et ae e e e earaeas 4
A =] o =) ¢ PRSP 7
R D T & I (e [[=) DSOS 13
Y VY oY G (=Tt (o) o) ISR 16
N D E=Y (TN (o (o o) TSRS 19

T N 0 1 T Lol - 14 4 1=T oY o =) PR 19
1.5.2 WYMIAry ODIEKEU c...eeieeiiiiee et bee e e sbee e e e eabae e e e s bee e e eareeas 19
T B Lo 1y {=T o Je [X o o1 1] G U ISR 20
1.5.4 WY SZUKIWANIE ...eeiiieiiie it e ettt ettt e e ettt e e e e e e e e e be e e e e ebae e e saabaeeesanbeeeeeeabaeeeeansaeeeeanseneeennsenas 21
1.5.5 Zmiana rozmiaru i KSZEattU «....cc.eeiuiiiiieieeeeeee e 22
1.5.6 SPrawdzani® ZAWartOSCi...uuieiiuieeiieieeeeceiiee e critee et e e esee e e s sree e e s ebee e s e sbae e s s snbae e e seabaeeeenareeas 23
1.5.7 TWOIZENIE WEKEOTOW ...cooniiiiiiiiiiie ettt et ettt ettt e e st e s sbee e sareesbaeesabeeeans 23
1.5.8 ZIMiana ZAWartOSCi..ccocuueeiieeeiieeriee ettt ettt ettt e ettt e st e e st e e s bt e s beeesabeeebeeesabeesanbeesbeeeaes 25
L. 5.0 KO OWANIE e 26
1.5.10 Wybieranie i WSTaWIaNIeueeiiiiiie ettt ettt e e e etee e e ebee e e e eatae e e e enbae e e enreeas 27
L 5. 0] EgCZONIE e 29
1.5.12 Operacje Zmiany OFiENTAC ..uueiiiirreuiiiteeeeeeersiirirteeeeeesssirreeeeeeesssstrrreeeeesssssssrseaeeessssssnnsnns 30
1.5.13 Zamiana WiIerszy, KOIUMNeiiiiiii et e e s ebae e e e 31
1.5.14 Pozostawianie wybranych wierszy, Kolumnccccooiiiiiiiiiie e, 32
N B 0] o =T -1 o] oY A USRS 33
1.5.06 SOMTOWANIE «..eeeiiiiiiie ettt e s s e s s e e s e e e e s s enree e s snneeas 34
T A T 1= - Yol [I = 14 o 1o =Tl o F SRS 35
1.5.18 OPEracie PlIKOWE.....ceiiiieee ittt ettt eee e e s ebee e e st ee e e e sabae e e esnbaaeeesabaeeeenareeas 36
1.5.19 Wyswietlanie, KASOWANIEeiiiiiiiiiiciiie ettt e e e e sbee e s e sabae e e s sabae e e e areeas 37
1.6 MACIEIZ (INALFIX) oottt ettt e ettt e e ettt e e e e bt e e e e e bteeeeebteeeesatsaeaeassaaasassaeeeassaeaeasseeananses 38
1.6.1 DEKIQracja ZIMIBNNE] ..cccccuvieeeieiiiee et eettee ettt e e etee e e s ratee e e e eabae e e e sabaee s eenbaeeeennbaeeeenareeas 38
I (o] 1V V=T £ - [38
B ST B VYo T =T o 1= O PRSP 39

1.6.4 WY PEINIANIE. ... et e e e e e e e et e e e e e e e e s bsbreeeeeeeesanbrraeeeeeeeeaannrrnes 41

1.6.5 POUSTAWOWE OPBIACIE ...uuviieeieiiiieeceitee e ettt e e eette e e e tte e e e ettae e e srata e e e seabaeeeesataeesenntaeeeennsaeeeennsenas 41
1.6.6 OPeracie statyStYCZNE oovvveeii e 43
1.6.7 OZ0INE POASUMOWANIE ...veiiiiiiiieeiciiie e eetiee e eeite e e eette e e e etee e e ssatee e e esabee e e eeabaeesesntaeesesnsaeesennsenas 44
1.6.8 Operacje dWUAIGUMENTOWE.cceiiuieieeiiieeeeitieeeestreeeessreeesssreeeessreeeessssaeessssseeeesssseessssssens 44
G O o T=T - | (] VN 45
1.6.10 AlZEDIa lINIOWAeeieei et e e e e e e e e et r e e e e eaba e e e e entaee e e eabaee e e nraeas 50
1.6.11 Regresja liniowa i inne metody NUMEIYCZNE...........eeeiiciieieeiiiee e eeae e e evae e e 51
1.6.12 Operacje na plikach binarnych ... e 51
B - oY1 T €]] =) RS RRRRRORR 53
R R D 1 T Lol - 14 4 1= o Yo =Y SRS 53
L.7.2 KONWETSJA ceieeiiiiiieeeeeeeeeeititee e et e s s sttt e e e e e s s st betaeeeesssasssraaaeeeesssasssseaaeeessssanssssaaaaeessnssnnssnne 53
B VYAV o Yo T a1 nY] =Y PRSP 53
R Y oY I T o Y TSRS 54
1.7.5 Operacje Wyboru i faktorOWE..........uuiii et 54
1.7.6 SOMTOWANIE ...ttt ettt e e e e e ettt e e e e e ettt e e e e e e s sbbeeeeeeeeeeannsseeeeeeeeasannnenee 56
1.7.7 Tworzenie bazy do MOdeIOWANIA......cciiciiiii ittt ebee e e 56
1.8 MACIEIZ 1ZAAKA (SPAISE)...uuveeeeetteee ettt ettt e ettt e e e et e e e ette e e e sbtaeeeebteeeeesteeesestaeaesastenaeannes 58
1.9 Metody NUMEIYCZNE (MUMPIOC)cccui et eeieeeeiteesieeseteeesieeesteeesaeesteessaeeesseesssseesssessnseessnseesnns 67
1.10 Sie€ NEUrONOWA (NEUIGL_NET) ..ueeeeeeieee ettt e ettt e e ettt e e et e e e e ette e e e e etaeeeestteeeesbtaeseesteeaeennes 71
0 I T A Yy (o7 Lo USSR 78
1.12 RAPOIE HTIML (AN ettt ettt ettt e e e et e e e et e e e e bt e e e e ebteeeeentaeaeentaeaeennes 83
1.13 Symulacje i kwantyle (Simulation, QUANTIIES)ccoccueeeeeciiieeecieee ettt e e ctee e e 87
114 JEZYK R (FTUN, FCPPCONV)...uveieeeeeee et ectee et e e ette sttt esaeessaee s s te e sssaeesnaeesneeesnsesenseeesnsessnneeesnseeanes 91

1 Spis funkcji HL++

1.1 Funkcje elementarne (elfun)

Metoda

Wartos¢ bezwzgledna

Deklaracja metody

double dabs(double x)

Przyktad wywotania

dabs(-2.5)

Opis dziatania

Wartos$¢ bezwzgledna liczby

Prawie zero

double nzero(double x)

nzero(0.0)

Zwraca EPS (1e-9), jesli argument wynosi 0. W innych przypadkach zwraca 'x'.

W przyktadzie wynikiem jest 1e-9.

Praktycznie zero

int praczero(double x)

praczero(1le-30)

Zwraca 1 (true), jesli argument jest nie wiekszy od PREC (1e-15). W innych przypadkach zwraca O (false).

Praktycznie nie zero

int notzero(double x)

notzero(1le-30)

Zwraca negacje praczero(x)

Praktycznie rowne

int praceql(double x,double
y)

praceql(1.0,1.01)

Poréwnuje 'x' i 'y' z doktadnoscig PREC (1e-15)

Praktycznie rézne

int noteql(double x,double
y)

noteql(1.0,1.01)

Zwraca negacje praceql(x,y)

Znak liczby

double sign(double x)

sign(10.0)

Znak liczby

Maksimum

double max(double x,double

max(4,5)

Wieksza z liczb

y)

int max(int x,int y)

Minimum double min(double x,double |min(4,5) Mniejsza z liczb
y)
int min(int x,int y)
Kwadrat liczby double sqr(double x) sqr(2.0) Kwadrat liczby
Potega catkowita double powi(double x,int e) |powi(3.2,5) Potega catkowita liczby rzeczywistej
Liczba losowa double rnd() rnd() Liczba losowa z rozktadu jednostajnego z przedziatu domknietego [0,1]
Liczba losowa 2 double rnd2() rnd2() Liczba losowa z rozktadu jednostajnego z przedziatu otwartego (0,1)
Zaokraglenie double round(double x) round(2.8) Zaokraglenie liczby. Mozna okresli¢ liczbe cyfr po przecinku ('prec'), ktére beda zaokraglone
double round(double x,int
prec)
Czy catkowita intis_int(double x) is_int(8.5) Zwraca 1 (true), jesli 'x' jest catkowita. W przeciwnym przypadku O (false)
Arcus tangens double atanh(double x) atanh(0.1) Arcus tangens hiperboliczny.
hiperboliczny i jego
pochodna double dtanh(double x) Pochodna arcus tangensa hiperbolicznego.
Secans hiperbolicznyi |double sech(double x) sech(0.1) Secans hiperboliczny.

jego pochodna

double dsech(double x)

Pochodna secansa hiperbolicznego.

Logit double logit(double x) logit(0.2) 1
Funkcja logit: 1+e*
Efektywnos¢ double effic(double x,double |effic(8,11) Funkcja efektywnosci: dla nieujemnych argumentdw zwracana jest srednia geometryczna, w innych

y)

przypadkach O

Erf — funkcja btedu double erf(double x) erf(0.0) Funkcja btedu Gaussa
Gaussa
@ — gestos¢ rozktadu double phi(double x) phi(1.5) Gestosc¢ rozktadu normalnego o $redniej 1 i wariancji 1

normalnego

1.2 Tekst (text)

Deklaracja zmiennej
tekstowej

Deklaracja metody

Text()

Przyktad wywotania

Text t

Opis dziatania

Deklarowana jest zmienna typu tekstowego

Tworzenie tekstu na
podstawie ciggu znakow

Text(const char *str)

Text t("jaki$ napis")

Tworzony jest tekst zdefiniowany ciggiem znakow

Tworzenie tekstu Text(char c) Text t(‘a’) Tworzony jest tekst ztozony z jednego znaku.
jednoznakowego

W tym przyktadzie bedzie to "a".
Tworzenie tekstu Text(int i) Text t(2) Tworzony jest tekst na podstawie liczby catkowite;j.
odpowiadajacego liczbie W dku bedzi oy
catkowitej tym przypadku bedzie to "2".
Tworzenie tekstu Text(double d) Text t(3.95) Tworzony jest tekst na podstawie liczby rzeczywiste;j.

odpowiadajacego liczbie
rzeczywistej

W tym przypadku bedzie to "3.95".

Lorem ipsum

Text lorem_ipsum(int
rep=1)

lorem_ipsum()

Funkcja zwraca demonstracyjny tekst ,,Lorem ipsum”. Parametr rep okresla liczbe powtdrzen tekstu
(domyslnie 1).

Konwersja na ciag operator char * () (char*)(t) Tekst jest konwertowany na cigg znakdéw
znakéow
Konwersja na double operator double() double(t) Tekst jest konwertowany n a liczbe typu double

Konwersja na string

string as_string(Text t)

as_string(t)

Tekst jest konwertowany na string.

Dtugos¢ int len(const Text &t) len(t) Zwraca dtugos¢ tekstu
Znak char & operator()(int n) t(5) Zwraca znak wystepujgcy w tekscie na pozycji ‘n’.
Operatory poréwnania |int operator ==(const Text |[t1==12 Dwa teksty sg porownywane znak po znaku. Dostepne sg wszystkie operatory (==,!=,<,>,<=,>=).
&t1,const Text &t2)
tl1<t2
int operator <(const Text
&t1,const Text &t2) dwa" =="dwa
itd.
Scalanie Text operator +(const Text [t1 +1t2 Dwa teksty sg scalane. W wyniku uzyskuje sie cigg znakow pierwszego i drugiego napisu, ustawione jeden za

&,const Text &)

"dwa"+"nascie"

drugim.

W drugim przyktadzie otrzymamy stowo "dwanascie".

Scalanie przyrostowe

void operator +=(const
Text &t)

tl+=12

Analogicznie jak +, ale przyrostowo.

Zamiana znaku

Text replace(const Text
&t,char cl,char c2)

replace("aut",’a’,’b’)

Zwracany jest tekst, w ktédrym znak c1 jest zastgpiony znakiem c2.

W tym przypadku zwrdécone zostanie stowo ,but”.

Zamiana kropek na
przecinki

Text dot2com(const Text
&t)

dot2com("3.22")

Zwracany jest tekst, w ktorym kropki (‘) sg zamienione na przecinki (‘,).

W tym przypadku zwrdécone bedzie "3,22".

Zamiana przecinkéw na

Text com2dot(const Text

com2dot("3,22")

Zwracany jest tekst, w ktérym przecinki (,’) sg zamienione na kropki (*.).

kropki

&t)

W tym przypadku zwrdcone bedzie "3.22".

Zamiana na wielkie
litery

Text to_upper(const Text
&t)

to_upper("Kowalski")

Litery w tekscie sg zamieniane na wielkie.

W tym przyktadzie wynikiem bedzie ,KOWALSKI”.

Zamiana na mate litery

Text to_lower(const Text
&t)

to_lower("Nowak")

Litery w tekscie sg zamieniane na mate.

W tym przyktadzie wynikiem bedzie ,nowak”.

Usuwanie polskich
znakow z tekstu

Text remove_pl(const Text
&t)

remove_pl(,rekodzieto

")

Polskie litery w tekscie sg zamieniane na litery tacinskie.

W tym przyktadzie wynikiem bedzie ,rekodzielo”.

Zmiana formatowania
znakoéw z ISO 8859-2 na
Windows-1250

Text to_win1250(const
Text &)

to_win1250(,tekst”)

Polskie litery zakodowanie zestawem wschodnioeuropiejskim Latin2 sg zamieniane na zakodowane
zestawem obowigzujgcym w systemie Windows PL.

Zmiana formatowania
znakoéw z ISO 8859-2 na
UTF-8

Text to_utf8(const Text &)

to_utf8(,tekst”)

Polskie litery zakodowanie zestawem wschodnioeuropiejskim Latin2 sg zamieniane na zakodowane
zestawem UTF-8 (wykorzystywanym m.in. w systemie Linux).

Fragment poczatkowy

Text part(const Text &t,int
1)

part("dwanascie",3)

Zwraca tekst sktadajacy sie z ‘I’ poczatkowych znakow tekstu ‘t’.

W tym przypadku wynikiem bedzie "dwa".

Fragment

Text subtext(const Text
&t,int f,int 1)

subtext("dwanascie",2,
3)

Zwraca tekst sktadajacy sie z ‘I’ znakdw tekstu ‘t’, zaczynajgcych sie od znaku o numerze ‘f'.

W tym przypadku wynikiem bedzie "wan".

Fragment koricowy

Text endtext(const Text
&t,int f)

endtext("dwanascie",4

)

Zwraca tekst sktadajacy sie z koncowych znakéw tekstu ‘t’, zaczynajacy sie od znaku o numerze ‘f’.

W tym przypadku wynikiem bedzie "nascie".

Zamiana liczby Text itot(int i) Itot(12) Zwracany jest tekst odpowiadajgcy danej liczbie catkowitej. Funkcja itot konwertuje liczby typu int, a funkcja
catkowitej na tekst Itot konwertuje liczby typu long int.
Text Itot(long 1) Itot(1234567890)
W pierwszym przyktadzie zwracany jest tekst "12", w drugim ,,1234567890".
Zamiana liczby Text dtot(double d,int I=0) |dtot(3.95) Zwracany jest tekst odpowiadajgcy danej liczbie rzeczywistej. Parametr ‘I’ okresla liczbe miejsc dziesietnych,

rzeczywistej na tekst

Text dtotl(double d)

Text dtots(double d)

dtot(3.95, 4)
dtotl(3.95)

dtots(3.95)

ktdére zostang zachowane. Dla I=0 konwersja zachowa 6 cyfr po przecinku.
Wersja dtotl (long) zachowuje 12 cyfr po przecinku.

Wersja dtots (short) zachowuje 2 cyfr po przecinku.

Zamiana liczby
catkowitej na tekst i
formatowanie w %

Text fperc(double d,int
1=2)

Text fperc2(double d,int
1=2)

fperc(0.12)

fperc2(0.12)

Zwracany jest tekst odpowiadajacy danej liczbie rzeczywistej, sformatowany w procentach z doktadnoscig do
'I'"miejsc po przecinku (domysInie dwdéch) i zakoriczony znakiem %.

Funkcja fperc2 zwraca tekst zakoriczony dwoma znakami %.

W pierwszym przypadku wynikiem jest "12.00%". W drugim "12.00%%".

Zamiana tekstu na int ttoi(const Text &t) ttoi("3") Zwraca liczbe catkowitg odpowiadajgcg danemu tekstowi.
liczbe catkowita
Zamiana tekstu na double ttod(const Text &t) |ttod("6.5") Zwraca liczbe rzeczywistg odpowiadajgcg danemu tekstowi.

liczbe rzeczywista

Ujecie w cudzystow

Text quote(const Text &t)

quote("abc")

Zwraca dany tekst ujety w cudzystéw.

W tym przypadku ""abc""

Czy data

int isdate(const Text &t)

isdate("2012-01-01")

Sprawdzenie czy tekst reprezentuje date. Zwracane jest 1 (true) lub 0 (false).

Czy liczba

int numerical(const Text
&t)

numerical("250.5")

numerical("2.505e2")

Sprawdzenie czy tekst reprezentuje liczbe. Zwracane jest 1 (true) lub O (false).

10

Sprawdzenie
wystapienia

int exist(char c)

int exist(const Text &t)

t.exist(‘a’)

t.exist("kot")

Sprawdzenie czy w tekscie wystepuje dana litera lub dany fragment. Zwraca 1 (true) lub 0 (false).

Pierwsza pozycja
wystapienia

int firstpos(char c)

int firstpos(const Text &t)

t.firstpos(‘a’)

t. firstpos ("kot")

Pierwsza pozycja, na ktorej w tekscie wystepuje dana litera lub dany fragment. Zwraca pozycje lub -1, gdy nie
znaleziono.

Ostatnia pozycja
wystapienia

int lastpos(char c)

int lastpos(const Text &t)

t.lastpos(‘a’)

t. lastpos ("kot")

Ostatnia pozycja, na ktdérej w tekscie wystepuje dana litera lub dany fragment. Zwraca pozycje lub -1, gdy nie
znaleziono.

Pozycja n-tego
wystgpienia znaku

int nthpos(char,int)

t.nthpos('a’,6)

Pozycja n-tego wystgpienia znaku w tekscie. Zwraca pozycje lub -1, gdy nie znaleziono.

Zastepowanie tekstu

Text replace(const Text
&t,const Text &in,const
Text &out)

replace(t,"kot","pies")

W tekscie t cigg znakdw wejsciowy ‘in’ jest zastepowany ciggiem wyjsciowym ‘out’. Gdy ‘in’
wystepuje wiecej niz raz, to zastepowanie dotyczy wszystkich wystgpien.

W przyktadzie stowo ‘kot’ jest zastepowane stowem ‘pies’.

Wyswietlenie ostream & operator cout<<t Wyswietlenie tekstu
<<(ostream &out,const
Text &t)

Pobranie istream & operator cin>>t Pobranie tekstu wpisywanego z klawiatury
>>(istream &in, Text &t)

Odczyt / zapis do pliku |void read(FILE *file) t.read(file) Odczyt/zapis tekstu do pliku typu FILE.
void write(FILE *file) t.write(file)

Woczytanie tresci z pliku

void read_file(const char

t.read_file(,dane.txt”)

Wczytanie do zmiennej tekstowej tresci z pliku o danej nazwie.

11

o danej nazwie

*name)

Woczytanie tresci z pliku
do stringa

string read_file(const
char *name)

read_file(,dane.txt”)

Wczytanie do stringa tresci z pliku o danej nazwie.

12

1.3 Data (date)

Deklaracja metody Przyktad wywotania

Opis dziatania

Deklaracja daty

date()

date da

Deklarowana jest zmienna typu data

Tworzenie daty na
podstawie napisu

date(const char *str)

date(const Text t)

date da("2014-12-06")

Tworzona jest zmienna data na podstawie napisu

Tworzenie daty na
podstawie sktadowych
rok, miesigc i dzien

date(long y,long m,long d)

date da(2014,12,6)

Tworzona jest zmienna data na podstawie sktadowych rok, miesigc i dzien

Zamiana napisu w date

date d(const char *str)

date da =d("2014-12-
06")

Zwraca date utworzong na podstawie napisu

Dzisiaj

date today()

date da = today()

Zwraca biezgcg date

Pierwszy dzien miesigca

date ymfirst(const date
&t)

ymfirst(d("2014-12-
06"))

Zwraca pierwszy dzien miesigca, w ktérym wystepuje data ‘t’.

W tym przypadku 2014-12-1

Ostatni dzien miesigca

date ymlast(const date
&t)

ymlast(d("2014-12-
06"))

Zwraca ostatni dzien miesigca, w ktorym wystepuje data ‘t’.

W tym przypadku 2014-12-31

Konwersja daty na
liczbe

operator double()

double(d("2014-12-
06"))

Konwertuje date na liczbe rzeczywistg. Zachowywany jest rok (jako czesci catkowite) i miesigc (na miejscach
dziesietnych). Dzierh miesigca jest ignorowany.

W tym przyktadzie zwracana jest liczba 2014.12.

13

Konwersja liczby na
date

date dtoda(double d)

date
da=dtoda(2014.12)

Liczba rzeczywista jest zamieniana na date. Liczba rzeczywista musi zawierac rok (jako czesci catkowite) i
miesigc (na miejscach dziesietnych).

W przyktadzie liczba 2014.12 jest zamieniana na date 2014-12-1

Konwersja daty na tekst

Text datot(const date
&da)

datot(d("2014-12-06"))

Konwertuje date na tekst.

W tym przyktadzie zwracany jest tekst "2014-12-06".

Dzien long day(const date &da) |day(d("2014-12-06")) |Zwraca dzien dla podanej daty.
W tym przypadku 6
Miesigc long month(const date month(d("2014-12- Zwraca miesigc dla podanej daty.
&da) 06"))
W tym przypadku 12
Rok long year(const date &da) |year(d("2014-12-06")) |Zwraca rok dla podanej daty.

W tym przypadku 2014

Sktadowe rok, miesigc,
dzien

void ymd(long &y,long
&m,long &d)

da.ymd(y,m,d)

Rozktada date na sktadowe rok (y), miesigc (m) i dzien (d).

Zwiekszenie o liczbe
dni

date operator +(const
date &da,const long [)

d("2014-12-06")+40

Zwieksza date o ‘I’ dni.

W tym przypadku wynikiem jest 2015-01-15

Zmniejszenie o liczbe
dni

date operator -(const date
&da,const long 1)

d("2014-12-06")-40

Zmniejsza date o ‘I’ dni.

W tym przypadku wynikiem jest 2014-10-27

Modyfikacja o liczbe dni

date dmod(const date
&da,const long 1)

dmod(d("2014-12-
06"),-40)

Modyfikuje date o ‘I’ dni. ‘I’ dodatnie powoduje zwiekszenie, a ‘I’ ujemne zmniejszenie daty.

W tym przypadku wynikiem jest 2014-10-27

14

Modyfikacja o liczbe
miesiecy

date mmod(const date
&da,const long [)

mmod(d("2014-12-
06"),2)

Modyfikuje date o ‘I’ miesiecy. ‘I’ dodatnie powoduje zwiekszenie, a ‘I’ uyjemne zmniejszenie daty. Jesli data
‘da’ jest z korica miesigca (np. 31), to po przesunieciu dzien jest zmiejszany (np. na 30), po to, by data

wynikowa byta poprawng data.

W tym przypadku wynikiem jest 2015-2-6

Modyfikacja o liczbe lat

date ymod(const date
&da,const long 1)

ymod(d("2014-12-
06"),-2)

Modyfikuje date o ‘I’ lat. ‘I’ dodatnie powoduje zwiekszenie, a ‘I’ uyjemne zmniejszenie daty.

W tym przypadku wynikiem jest 2012-12-6

Roéznica

long operator -(const date
&dal,const date &da2)

d("2014-12-26")-
d("2012-12-06")

Obliczana jest réznica miedzy datami (wyrazona w dniach).

W tym przypadku réznica wynosi 750 dni.

Poréwnywanie

int operator ==(const date
&dal,const date &da2)

int operator <(const date
&dal,const date &da2)

itd.

d("2014-12-26") ==
d("2012-12-06")

d("2014-12-26") <
d("2012-12-06")

Daty sg porownywane z dokfadnoscig do dnia. Dostepne sg wszystkie operatory (==,1=,<,>,<=,>=).

Wyswietlenie

ostream & operator
<<(ostream &out,const
date &da)

cout<<d("2014-12-06")

Wyswietlenie daty

Pobranie

istream & operator
>>(istream &in,date &da)

cin>>da

Pobranie daty wpisywanej z klawiatury. Oczekiwany jest format yyyy-mm-dd. Separatorem moze tez by¢
kropka lub /.

15

1.4 Wektor (vector)

Metoda

Utworzenie wektora

Deklaracja metody

vector()

Przyktad wywotania

vector v

Opis dziatania

Tworzony jest pusty wektor v

Utworzenie wektora
danej dtugosci

vector(int n_new)

vector v(5)

Tworzony jest wektor v o dtugosci 5

Dtugos¢ wektora int length(const vector length(v) Zwracana jest dtugos¢ wektora
&v)

Element wektora int & operator ()(int i) v(3) Dostep do 3 elementu wektora v

Wektor statych vector c(int c1,int c2,int c(2,4,8) Powstaje wektor o wartosciach podanych jako argumenty. W ten sposdéb mozna tworzy¢ wektory o dtugosci
c3,int c4,int c5,int ¢6,int do 10. Dtuzsze wektory uzyskuje sie funkcjg 'vi'. W tym przypadku powstaje wektor o elementach [2,4,8].
c7,int c8,int c9,int c10)

Wektor statych dane;j vector vi(int 1,...) vi(3,2,4,8) Powstaje wektor o dtugosci 'l' i wartosciach podanych jako kolejne argumenty. W tym przypadku wektor o

dtugosci dtugosci 3 i elementach [2,4,8]

Sekwencja liczb od 1 vector $(int b) $(10) Powstaje sekwencja liczb od 1 do b. W tym przypadku [1,2,3,4,5,6,7,8,9,10]

Sekwencja liczb vector S(int a,int b) $(3,8) Powstaje sekwencja liczb od a do b. W tym przypadku [3,4,5,6,7,8]

Sekwencja ze skokiem |vector $(int a,int step,int |$(1,2,9) Powstaje sekwencja liczb od a do b, krokiem ‘step’. W tym przypadku [1,3,5,7,9]
b)

Wypetnianie statg void fill(int c) v.fill(8) Wypetnianie wektora stata. W tym przypadku wektor v zostaje wypetniony wartosciami 8

16

Wektor statych vector filled(int c,int 1) filled(8,5) Powstaje wektor o dtugosci ‘I, wypetniony statg ‘c’. W tym przypadku [8,8,8,8,8]

Wektor zer vector vzeros(int I) vzeros(5) Powstaje wektor o dtugosci ‘I’, wypetniony zerami. W tym przypadku [0,0,0,0,0]

Wektor jedynek vector vones(int |) vones(5) Powstaje wektor o dtugosci ‘I’, wypetniony jedynkami. W tym przypadku [1,1,1,1,1]

Suma wartosci int sum(const vector &v) |sum(v) Suma elementow wektora

Wyszukanie pozycji vector find(const vector find(v) Wyszukuje pozycje, na ktorych w wektorze sg wartosci rézne od 0. Wynikiem jest wektor indekséw, np.

niezerowych

&v)

v=c(2,0,8)
v2=find(v)

v to wektor [2,0,8]. Wdwczas v2 to wektor [1,3]

Indeks przeciwny do
danego indeksu

vector nindex(const vector
&v,int nl)

nindex(v,15)

Tworzy wektor indekséw przeciwnych do danego, z zakresu od 1 do nl. Np.
v=c(-1,-3,-5,-7,-9)
v2=nindex(v,15)

v to wektor [-1,-3,-5,-7,-9]. Wowczas v2 to wektor [2,4,6,8,10,11,12,13,14,15]

Zmiana dtugosci

void resize(int n_new)

v.resize(10)

Zmiana dtugosci wektora.

Zwolnienie pamieci void free() v.free() Zwolnienie pamieci przydzielonej dla wektora.
Operacja zmiany znaku |Vector operator -(const -v Zmiana znaku elementéw wektora na przeciwny.
Vector &)
Zaprzeczenie vector operator !(const lv Zaprzeczenie elementdw wektora. Zera zamieniane sg na jedynki, inne wartosci na zera.

vector &v)

17

Koniunkcja

vector operator &&(const
vector &v1,const
vector&v2)

v1&&v2

Koniunkcja po elementach wektoréw v1iv2

Alternatywa

vector operator | |(const
vector &a,const vector
&b)

vl]||v2

Alternatywa po elementach wektoréw v1iv2

Wyswietlenie wektora

void display(Text
name="")

v.display()

Wyswietlanie wektora. Jako parametr mozna poda¢ nazwe do wyswietlenia.

18

1.5 Dane (data)

Wszystkie funkcje i metody wymienione w tym rozdziale dziatajg zarowno dla obiektow typu macierz (matrix) jak i tabela (table).

1.5.1 Deklaracja zmiennej

Utworzenie pustych
danych

Deklaracja metody

data()

Przyktad wywotania

data d

Opis dziatania

Tworzone s3 puste dane

Utworzenie danych o
zadanych wymiarach

data(int m,int m)

data d(5,3)

Tworzone sg dane o wymiarach m x n (m wierszy, n kolumn).

W tym przypadku tworzone sg dane o wymiarach 5x3 (5 wierszy, 3 kolumny).

Utworzenie danych o data(int m) data d(3) Tworzone sg dane wymiarach m x m.
zadanym wymiarze
W tym przypadku tworzone sg dane o wymiarach 3x3.
1.5.2 Wymiary obiektu
Liczba wierszy int sizel(const data &a) sizel(d) Zwraca liczbe wierszy obiektu
int nrow(const data &a) nrow(d)
Liczba kolumn int size2(const data &a) size2(d) Zwraca liczbe kolumn obiektu

19

int ncol(const data &a)

ncol(d)

Dtugos¢

int length(const data &a)

length(d)

Zwraca dtugos¢ obiektu (wiekszy z wymiaréw). W przypadku obiektéw, ktérych jeden z wymiaréw wynosi 1,
funkcja ta ma naturalng interpretacje.

1.5.3 Dostep do obiektu

Etykieta wiersza o
danym numerze

Text & rowname(int i)

d.rowname(1)

Zwraca etykiete wiersza o numerze 'i'. W tym przypadku pierwszego

Etykieta kolumny o
danym numerze

Text & colname(int j)

d.colname(5)

Zwraca etykiete kolumny o numerze 'j'. W tym przypadku 5

Dostep do elementu za |T & operator ()(inti,intj) |d(2,3) Zwraca element z wiersza ‘I’ i kolumny ‘j’. W tym przypadku z wiersza 2 i kolumny 3

pomoca numeru

wiersza i numeru

kolumny

Dostep do elementu za |T & operator ()(int i, Text d(2,”CoL3") Zwraca element z wiersza ‘I’ i kolumny o nazwie name2. W tym przypadku z wiersza 2 i kolumny o nazwie
pomocy humeru name2) ,COL3”

wiersza i nazwy

kolumny

Dostep do elementu za |T & operator ()(Text d(“ROW2”,3) Zwraca element z wiersza o nazwie namel i kolumny ‘j’. W tym przypadku z wiersza o nazwie ,ROW2” i
pomocy nazwy wiersza |namel,int j) kolumny 3

i numeru kolumny

Dostep do elementu za |T & operator ()(Text d(“ROW2”,”COL3") Zwraca element z wiersza o nazwie namel i kolumny o nazwie name2. W tym przypadku z wiersza o nazwie

pomocy hazwy wiersza

namel,Text name2)

,ROW2” i kolumny o nazwie , COL3”

20

i nazwy kolumny

Dostep do elementu T & operator ()(int i) d(5) Jesli obiekt na jeden z wymiardow réwny 1, czyli jest wektorem, aby dostad sie do jego elementéw wystarczy
wektora podac tylko jeden argument — pozycje elementu. W tym przypadku zwracany jest element pigty.

Wybér kolumny na data operator [](Text d[“WIEK”] Zwracana jest kolumna danych o nazwie name2. W tym przypadku kolumna o etykiecie , WIEK”

podstawie jej nazwy name2)

Wybér kolumny na data operator [](int j) d[16] Zwracana jest kolumna danych o numerze 'j'. W tym przypadku kolumna 16

podstawie jej numeru

1.5.4 Wyszukiwanie

Wyszukiwanie numeru
wiersza

int find_row(Text
namel,int upper=1)

d.find_row(,,ROW1”)

Zwraca numer wiersza o etykiecie namel. W przypadku nieznalezienia, zwraca 0. Parametr upper=1
oznacza, ze wielkos¢ liter w nazwie nie bedzie brana pod uwage.

W tym przypadku wyszukiwany jest wiersz o etykiecie ,ROW1”.

Wyszukiwanie numeru
kolumny

int find_col(Text
name2,int upper=1)

d.find_col(,,COL5")

Zwraca numer kolumny o etykiecie name2. W przypadku nieznalezienia, zwraca 0. Parametr upper=1
oznacza, ze wielkos¢ liter w nazwie nie bedzie brana pod uwage.

W tym przypadku wyszukiwana jest kolumna o etykiecie ,,COL5”.

Wyszukiwanie
elementu w kolumnie o
danym numerze

int find_cell(T cell,int
col,int row0=1)

d.find_cell(“10 lat”,16)

Przeszukuje kolumne o numerze col, zeby znalez¢ element cell. Zwraca numer wiersza, w ktérym jest
element cell. Jesli nie znaleziono szukanego elementu, funkcja zwraca 0. Domyslnie szukanie rozpoczyna sie
od wiersza o numerze 1. Mozna wybrac inny wiersz startowy (parametr row0).

W tym przypadku szukany jest element ,10 lat” w kolumnie 16, poczgwszy od wiersza 1.

21

Wyszukiwanie
elementu w kolumnie o
danej nazwie

int find_cell(T cell, Text
cname,int row0=1,int
upper=1)

d.find_cell(“10
lat”,”WIEK”,1000)

Przeszukuje kolumne o nazwie cname, zeby znalez¢ element cell. Zwraca numer wiersza, w ktérym jest
element cell. Jedli nie znaleziono szukanego elementu, funkcja zwraca 0. Domyslnie szukanie rozpoczyna sie
od wiersza o numerze 1. Mozna wybrac inny wiersz startowy (parametr row0Q). Parametr upper=1 oznacza,
ze wielkos¢ liter w nazwie nie bedzie brana pod uwage.

W tym przypadku szukany jest element ,,10 lat” w kolumnie o nazwie , WIEK”, poczawszy od wiersza 1000.

1.5.5 Zmiana rozmiaru i ksztaltu

Zmiana rozmiaru
obiektu

void resize(int m_new,int
n_new)

d.resize(5,10)

Zmiana wymiarow obiektu. Po zmianie obiekt ma m_new wierszy i n_new kolumn. Zawartosc obiektu ulega
skasowaniu.

W tym przypadku obiekt bedzie miat wymiary 5x10

Zmiana rozmiaru
obiektu z zachowaniem
zawartosci

void resizec(int m_new, int
n_new)

d.resizec(5,10)

Zmiana wymiarow obiektu. Po zmianie obiekt ma m_new wierszy i n_new kolumn. Zawartosc¢ obiektu jest
zachowywana. Jesli nowe wymiary sg wieksze od pierwotnych, to elementy nie wystepujace w obiekcie
pierwotnym pozostajg puste (dla typu tekst) lub 0 (dla typu liczbowego).

W tym przypadku obiekt bedzie miat wymiary 5x10

Przegrupowanie
obiektu

void reshape(int
m_new,int n_new)

d.reshape(5,10)

Przegrupowanie obiektu pozwala zmieni¢ uktad elementéw obiektu. Wymagane jest, aby liczba elementéw
pierwotnego i docelowego byta taka sama. Elementy sg kopiowane kolumnami.

W tym przypadku jesli ‘d’ ma 50 elementdéw (np. ma wymiary 25x2), to moze zostac¢ przegrupowane do
obiektu o wymiarach 5x10.

Zmiana w wektor

data vect(const data &a)

vect(d)

Obiekt 'a' jest przegrupowywany w wektor kolumnowy. Elementy sg kopiowane kolumnami.

Dodanie nowych
wierszy

void newrows(int m2)

d.newrows(100)

Dodawane sg nowe wiersze do danych. Liczba nowych wierszy wynosi m2.

W tym przypadku dochodzi 100 wierszy.

22

Dodanie nowej
kolumny

void newcol(Text name2)

d.newcol(,DOCHOD")

Dodawana jest nowa kolumna o nazwie name2 do danych.

W tym przypadku kolumna o etykiecie ,,DOCHOD”

1.5.6 Sprawdzanie zawartoSci

Czy pusty int isempty(const data &a) |isempty(d) Sprawdzenie czy obiekt 'a' jest pusty. Zwraca O (false) lub 1 (true)

Czy kwadratowy int issgr(const data &a) issqr(d) Sprawdzenie czy obiekt 'a' jest kwadratowy. Zwraca 0 (false) lub 1 (true)

Czy symetryczny int issym(const data &a) issym (d) Sprawdzenie czy obiekt 'a’ jest symetryczny wzgledem gtéwnej przekatnej. Zwraca O (false) lub 1 (true)

Czy jakikolwiek istotny |int any(const data &a) any(d) Sprawdzenie czy obiekt 'a’ zawiera jakikolwiek istotny element. W przypadku elementéw tekstowych
nieistotny jest cigg pusty znakéw (,,”). W przypadku elementéw liczbowych nieistotne sg zera.
Zwraca 0 (false) lub 1 (true)

Czy wszystkie istotne int all(const data &a) all(d) Sprawdzenie czy wszystkie elementy obiektu 'a' sg istotne. W przypadku elementdéw tekstowych nieistotny

jest cigg pusty znakow (,,”). W przypadku elementow liczbowych nieistotne sg zera.

Zwraca 0 (false) lub 1 (true)

1.5.7 Tworzenie wektorow

Utworzenie wektora

data c(T,T,T,T,T,T,T,T,T,T)

¢(10,20,30,40,50)

C(”Ala”,”ma”,"kota”)

Tworzony jest wektor na podstawie statych. W ten sposéb mozna tworzy¢ wektory o dtugosci do 10. Dtuzsze
nalezy tworzy¢ za pomocg funkcji ‘vd’ dostepnej dla macierzy.

23

non

W pierwszym przypadku wektor liczb [10,20,30,40,50]. W drugim wektor tekstowy [, Ala”,”ma”,”kota”].

Powielenie zadang data rep(const data &v,int |rep(d,2) Zwraca dany wektor v powielony n razy.
liczbe razy n)
W tym przypadku 2 razy
Powielenie do danej data replen(const data replen(d,10) Zwraca dany wektor v powielony tyle razy, aby wektor wynikowy miat dtugos¢ I.
dtugosci &v,int 1)
W tym przypadku zwracany jest wektor o dtugosci 10
Powielenie kazdego data repeach(const data repeach(d,2) Zwraca wektor v sktadajacy sie z elementéw wektora d, kazdego powtdrzonego n razy.

elementu dang liczbe
razy

&v,int n)

W tym przypadku zwracany jest wektor sktadajacy sie z elementédw wektora d, kazdy element powtdrzony 2
razy.

Powielenie kazdego
elementu zdefiniowang
liczbe razy

data rep(const data
&v,const vector &index)

rep(d,indeks)

Zwraca wektor sktadajacy sie z elementéw wektora v, kazdego powtdrzonego zdefiniowang w wektorze
index liczbe razy.

Przyktadowo:
d to wektor [, Kot”, ,Pies”]
indeks to wektor [2,3]

Wdweczas zwracany jest wektor [, Kot”, ”Kot”, ”Pies” ,”Pies”, "Pies”]

Utworzenie danych na
podstawie dwéch
wektorow i funkcji

data outer(const data
&v1l,const data &v2,T
fun(T,T))

outer(d1,d2,suma)

Tworzony jest obiekt prostokatny, ktérego elementy sg wynikiem funkcji ‘fun’ wywotanej z argumentami
pochodzgcymi z wektora v1 i v2. Elementy obiektu wyjsciowego o wspdtrzednych (i,j) przyjmuja wartosci
fun(vi(i),v2(j)).

W tym przypadku zwracany jest obiekt, ktorego elementy to wywotanie funkcji ‘suma’ dla odpowiednich
elementéw d1id2.

24

1.5.8 Zmiana zawartosci

Wypetnianie statg

void fill(T t)

d.fill(,ABC”)

Obiekt jest wypetniany statg wartoscia ‘t’.

W tym przypadku, wszystkie elementy sg wypetnione tekstem ,ABC”

Wypetnianie statg w
zakresie

void fill(T t,int mO,int
n0,int m_num,int n_num)

d.fill(,ABC”,1,2,10,20)

Obiekt jest wypetniany statg wartoscia ‘t’ w zadanym zakresie. W zakresie od wiersza ‘m0Q’ i kolumny ‘n0’
wypetnianych jest ‘m_num’ wierszy i ‘n_num’ kolumn.

W tym przypadku nastepuje wypetnienie tekstem ,,ABC” dziesieciu wierszy zaczynajac od pierwszego i 20
kolumn zaczynajac od drugiej.

Czyszczenie void clear(int clnames=0) |d.clear() Obiekt jest czyszczony. Jesli elementy sg typu tekst, wstawiany jest pusty tekst (,,”). Jesli elementy sa
liczbowe, wstawiane sg zera. Mozna wybrac, czy usungc etykiety kolumn i wierszy (parametr ‘clnames’)
Aplikowanie funkcji do | void forall(T f(T)) d.forall(f) Na elementy obiektu naktadana jest funkcja ‘f’

elementow

Aplikowanie funkcji do
danej kolumny

void forcol(int n, T f(T))

d.forcol(2,f)

Na elementy obiektu w kolumnie ‘n’ naktadana jest funkcja ‘¥’

Aplikowanie funkcji do
danego wiersza

void forrow(int n,T f(T))

d.forrow(3,f)

Na elementy obiektu w wierszu ‘n’ naktadana jest funkcja ‘f’

Tworzenie obiektu
poprzez aplikowanie
funkcji do elementow

data forall(const data
&d, T f(T))

forall(d,f)

Tworzony jest obiekt, ktorego element powstajg z elementéw ‘d’ poprzez natozenie funkcji ‘f'.

Tworzenie obiektu
poprzez aplikowanie
funkcji do danej

data forcol(const data
&d,int n, T f(T))

forcol(d,2,f)

Tworzony jest obiekt, ktérego element powstajg z elementéw ‘d’. Na kolumne o numerze ‘n’ naktadana jest
funkcja f'.

25

kolumny

Tworzenie obiektu
poprzez aplikowanie
funkcji do danego
wiersza

data forrow(const data
&d,int n, T f(T))

forrow(d,3,f)

Tworzony jest obiekt, ktérego element powstajg z elementdw ‘d’. Na wiersz o numerze ‘n’ naktadana jest
funkcja ‘f’.

1.5.9 Kopiowanie

Kopiowanie fragmentu
(6 parametrow zakresu)

void copy(const data
&src,int m0_src,int
n0_src,int m_num,int
n_num,data &dst,int
mO_dst,int n0_dst)

copy(d,1,1,10,20,e,3,2
)

Kopiowanie fragmentu obiektu ‘src’ do obiektu ‘dst’. Mozna wybrac wiersz poczatkowy i liczbe wierszy
(parametry ‘m0_src’,’m_num’) oraz kolumne poczatkowsg i liczbe kolumn do skopiowania (parametry
‘n0_src’, ‘n_num’). Mozna tez okresli¢, w ktére miejsce obiektu ‘dst’” wkopiowac (parametry ‘mQ_dst’,
‘n0_dst’). Operacja kopiowania jest zabezpieczona przed przekroczeniem zakreséw obiektu docelowego.

W tym przypadku kopiuje sie z ‘d’ do ‘e’. Pierwszych 10 wierszy i pierwszych 20 kolumn jest kopiowanych w
miejsce zaczynajgce sie od 3 wiersza i drugiej kolumny ‘e’.

Kopiowanie fragmentu
(4 parametry zakresu)

void copy(const data
&src,int mO,int n0,int
m_num,int n_num,data
&dst)

copy(d,1,1,10,20,e)

Kopiowanie fragmentu obiektu ‘src’ do obiektu ‘dst’. Mozna wybrac wiersz poczatkowy i liczbe wierszy
(parametry ‘m0’,’m_num’) oraz kolumne poczatkows i liczbe kolumn do skopiowania (parametry ‘n0’,
‘n_num’). Operacja kopiowania jest zabezpieczona przed przekroczeniem zakreséw obiektu docelowego.

W tym przypadku kopiuje sie z ‘d’ do ‘e’. Pierwszych 10 wierszy i pierwszych 20 kolumn jest kopiowanych w
miejsce zaczynajace sie od pierwszego wiersza i pierwszej kolumny ‘e’.

Kopiowanie fragmentu
(2 parametry zakresu)

void copy(const data
&src,int m_num,int
n_num,data &dst)

copy(d,10,20,e)

Kopiowanie fragmentu obiektu ‘src’ do obiektu ‘dst’. Mozna wybrac liczbe wierszy (parametry 'm_num’)
oraz liczbe kolumn do skopiowania (parametry ‘n_num’). Operacja kopiowania jest zabezpieczona przed
przekroczeniem zakresow obiektu docelowego.

W tym przypadku kopiuje sie z ‘d’ do ‘e’. Pierwszych 10 wierszy i pierwszych 20 kolumn jest kopiowanych w
miejsce zaczynajgce sie od pierwszego wiersza i pierwszej kolumny ‘e’.

26

Kopiowanie fragmentu
(bez parametrow
zakresu)

void copy(const data
&src,data &dst)

copy(d,e)

Kopiowanie fragmentu obiektu ‘src’ do obiektu ‘dst’. Operacja kopiowania jest zabezpieczona przed
przekroczeniem zakresow obiektu docelowego.

W tym przypadku kopiuje sie z ‘d’ do ‘e’.

Kopiowanie etykiet z
wierszy do wierszy

void copynames_r2r(const
data &src,data &dst)

copynames_r2r(d,e)

Kopiowane s etykiety wierszy z obiektu ‘src’ do etykiet wierszy ‘dst’.

Kopiowanie etykiet z
kolumn do kolumn

void
copynames_c2c(const
data &src,data &adst)

copynames_c2c(d,e)

Kopiowane sg etykiety kolumn z obiektu ‘src’ do etykiet kolumn ‘dst’.

Kopiowanie etykiet z
kolumn do wierszy

void
copynames_c2r(const
data &src,data &adst)

copynames_c2r(d,e)

Kopiowane sg etykiety kolumn z obiektu ‘src’ do etykiet wierszy ‘dst’.

Kopiowanie etykiet z
wierszy do kolumn

void
copynames_r2c(const
data &src,data &dst)

copynames_r2c(d,e)

Kopiowane s3 etykiety wierszy z obiektu ‘src’ do etykiet kolumn ‘dst’.

Kopiowanie etykiet

void copynames(const
data &src,data &dst)

copynames(d,e)

Kopiowane s3 etykiety wierszy i kolumn z obiektu ‘src’ do ‘dst’.

1.5.10 Wybieranie i wstawianie

Wybor
kolumn/kolumny

data col(const data
&d,const vector &index)

data col(const data &d,int

col(d,c(1,2,3))

col(d,5)

Z obiektu ‘d" wybierane sg kolumny zdefiniowane przez ‘index’. Mozna wskazac¢ jedng kolumne.

W pierwszym przypadku wybierane sg kolumny 1, 2i 3.

27

no)

data col(const vector
&index)

data col(int no)

d.col(c(1,2,3))

d.col(5)

W drugim przypadku wybierana jest kolumna piata.

Wstawienie
kolumn/kolumny

setcol(const vector
&index,const data &cols)

setcol(int no,const data
&cols)

d.setcol(c(1,2,3),cols)

d.setcol(5,col7)

Do obiektu ‘d” wstawiane sg kolumny ‘cols’ w miejsce zdefiniowane przez wektor ‘index’. Mozna wstawi¢
jedna kolumne, wskazujac numer.

W pierwszym przypadku do ‘d’ wstawiane sg ‘cols’ do 1, 2 i 3 kolumny.

W drugim przypadku do piatej kolumny ‘d” wstawiana jest kolumna ‘col7’

Wybér wiersza/wierszy

data row(const data
&d,const vector &index)

data row(const data
&d,int no)

data row(const vector
&index)

data row(int no)

row(d,c(1,2,3))
row(d,5)
d.row(c(1,2,3))

d.row(5)

Z obiektu ‘d’ wybierane sg wiersze zdefiniowane przez ‘index’. Mozna wskaza¢ jeden wiersz.
W pierwszym przypadku wybierane sg wiersze 1, 2 i 3.

W drugim przypadku wybierany jest wiersz pigty.

Wstawienie
wiersza/wierszy

setrow(const vector
&index,const data &rows)

setrow(int no,const data
&rows)

d.setrow(c(1,2,3),rows

~

d.setrow(5,row7)

Do obiektu ‘d” wstawiane sg wiersze ‘rows’ w miejsce zdefiniowane przez wektor ‘index’. Mozna wstawic¢
jeden wiersz, wskazujac numer.

W pierwszym przypadku do ‘d’ wstawiane sg ‘rows’ do 1, 2 i 3 wiersza.

W drugim przypadku do pigtego wiersza ‘d’ wstawiany jest wiersz ‘row7’

Wybor wierszy i kolumn

data get(const data
&src,const vector

get(d,c(1,2),c(3,5))

Z obiektu ‘src’ wybierane sg wiersze i kolumny zdefiniowane indeksami.

28

&index_rows,const vector
&index_cols)

data get(const vector
&index_rows,const vector
&index_cols)

d.get(c(1,2),¢(3,5))

W tym przypadku z ‘d” wybierane sg elementy z wierszy 1 i 2 oraz kolumn 3i 5.

Wstawianie wierszy i
kolumn

void set(const vector
&index_rows_dst,const
vector
&index_cols_dst,const
data &src,const vector
&index_rows_src,const
vector &index_cols_src)

e.set(c(20,15),c(1,2),d,
c(1,2),¢(3,5))

Do obiektu w miejsce zdefiniowane indeksami docelowymi wstawiany jest fragment obiekt ‘src’
zdefiniowany indeksami zrodtowymi.

W tym przypadku z ‘d’ wybierane sg elementy z wierszy 1i 2 i kolumn 3 i 5. Sg one wstawiane do ‘e’ do
wierszy 20i 15 i kolumn 11 2.

Wstawianie wierszy i
kolumn (bez definicji
indeksow zrodtowych)

void set(const vector &
index_rows_dst,const
vector &
index_cols_dst,const data
&src)

e.set(c(20,15),c(1,2),d)

Do obiektu w miejsce zdefiniowane indeksami docelowymi wstawiany jest obiekt ‘src’.

W tym przypadku z obiekt ‘d’ jest wstawiany do ‘e’ do wierszy 20i 15 i kolumn 1 2.

1.5.11 Laczenie

taczenie obiektow data operator | (const alb Obiekty ‘a’ i ‘b’ sg tgczone poprzez ich zestawienie obok siebie. Wymagana jest zgodnos¢ liczby wierszy.
poprzez dodanie data &a,const data &b)

kolumn

Dotaczanie kolumn void operator |=(const al=b Obok obiektu ‘a’ jest dostawiany ‘b’. Wymagana jest zgodnos$¢ liczby wierszy.

data &a)

29

taczenie obiektow data operator & (const a&b Obiekty ‘a’ i ‘b’ sg taczone poprzez ich zestawienie jeden nad drugim. Wymagana jest zgodnos¢ liczby
poprzez dodanie data &a,const data &b) kolumn.
wierszy
Dotaczanie wierszy void operator &=(const a&=b Pod obiektem ‘@’ jest dostawiany ‘b’. Wymagana jest zgodnos¢ liczby kolumn.
data &a)
Tasowanie kolumn data shufflecol(const data |shufflecol(a,b) Miedzy kolumny ‘@’ s3 réwnomiernie wstawiane kolumny ‘b’

&a,const data &b)

Tasowanie wierszy

data shufflerow(const
data &a,const data &b)

shufflerow(a,b)

Miedzy wiersze ‘@’ sg rownomiernie wstawiane wiersze ‘b’

1.5.12 Operacje zmiany orientacji

Transpozycja data operator ~ (const ~d Transpozycja wierszy i kolumn. W wersji ‘tr()’ obiekt musi by¢ kwadratowy.
data &a)
d.tr()
void tr()
Zamiana lewo-prawo data fliplr(const data &a) | fliplr(d) Zamiana elementdéw z lewej na prawo.
void fliplr() d.fliplr()
Zamiana goéra-dét data flipud(const data &a) |flipud(d) Zamiana elementéw z gor na dét.
void flipud() d.flipud()
Obroét o 90 stopni data rot90(const data &a) |rot90(d) Obrét o 90 stopni.
void rot90() d.rot90()

30

Przesuniecie w gore data up(const data &a) up(d) Przesuniecie trojkatne w gore.
void up() d.up()

Przesuniecie w dot data down(const data &a) |down(d) Przesuniecie tréjkatne w dot.
void down() d.down()

Dolny tréjkat data tril(const data &a) tril(d) Dolny tréjkat (gérny wypetniony ,,” lub 0).
void tril() d.tril()

Gorny tréjkat data triu(const data &a) triu(d) Gorny trojkat (dolny wypetniony ,,” lub 0).
void triu() d.triu()

1.5.13 Zamiana wierszy, kolumn

Zamiana wierszy

void swap_rows(int r1,int
r2)

d.swap_rows(2,10)

Zamiana wierszy.

W tym przypadku zamiana wiersza 2 z 10.

Zamiana kolumn

void swap_cols(int c1,int
c2)

d.swap_cols(2,10)

Zamiana kolumn.

W tym przypadku zamiana kolumny 2 z 10.

Losowy uktad wierszy

void
random_shuffle_rows()

d.random_shuffle_ro
ws()

Wiersze sg uktadane w losowej kolejnosci

Losowy ukfad kolumn

void
random_shuffle_cols()

d.random_shuffle_col

s()

Kolumny sg uktadane w losowe] kolejnosci

31

Zmiana kolejnosci
wierszy

void reorder_rows(const
vector &ord,int
reord_values=1,int
reord_labels=1)

d.reorder_rows(ord)

Wiersze sg uktadane w kolejnosci zdefiniowanej przez wektor ord. Mozna okresli¢, czy zmiana kolejnosci
dotyczy wartosci (parametr reord_values), czy etykiet (parametr reord_labels). Domysinie zamieniane s3 i
wartosci, i etykiety.

Zmiana kolejnosci
kolumn

void reorder_cols(const
vector &ord,int
reord_values=1,int
reord_labels=1)

d.reorder_cols(ord)

Kolumny sg uktadane w kolejnosci zdefiniowanej przez wektor ord. Mozna okresli¢, czy zmiana kolejnosci
dotyczy wartosci (parametr reord_values), czy etykiet (parametr reord_labels). DomysInie zmieniane s3 i
wartosci, i etykiety.

1.5.14 Pozostawianie wybranych wierszy, kolumn

Pozostawianie wierszy
od-do

void leave_rows(int rl,int
r2)

d.leave_rows(50,100)

Pozostawianie wierszy od r1 do r2

Pozostawianie kolumn
od-do

void leave_cols(int c1,int
c2)

d.leave_cols(50,100)

Pozostawianie kolumn od c1 do c2

Pozostawianie wierszy
do danego

void leave_rows_to(int r2)

d.leave_rows_to(100)

Pozostawianie wierszy od 1 do r2

Préobka losowa
okreslona ilosciowo

data sample_n(int num,int

repl=0)

d.sample_n(1000)

Losuje prébke o licznosci num z danych. Parametr repl okresla, czy losowanie ma by¢ ze zwracaniem
(domyslnie bez zwracania).

W przyktadzie wylosowanych bedzie 1000 przypadkdw bez zwracania.

Préobka losowa
okreslona udziatem

data sample_frac(double
frac,int repl=0)

d.sample_frac(0.5,1)

Losuje prébke o zdefiniowanym udziale z danych. Parametr frac okresla udziat. Parametr repl okresla, czy
losowanie ma by¢ ze zwracaniem (domysInie bez zwracania).

W przyktadzie wylosowanych bedzie 50% przypadkdw ze zwracaniem.

32

Filtrowanie danych data filter(const data filter(d,v) Z obiektu ‘d’ sg wybierane wiersze, dla ktérych wektor warunkowy ‘v’ przyjmuje wartosci 1 (pomijane sg te z
&d,const vector &v) 0). Dtugos¢ ‘v’ musi by¢ zgodna z liczbg wierszy ‘d’.
d.filter(v)
data filter(const vector Druga wersja funkcji odwotuje sie do obiektu ‘d’.
&v)
Dopasowywanie vector match(const data match(d,e) Sprawdzanie, na ktérych pozycjach ‘v2’ sg elementy ‘v1’. Zwracany jest wektor pozycji. Mozna wybrac
wektoréw &v1,const data &v2,int kolejnos¢ dziatania funkcji (parametr ‘fromlast’) i co wstawi¢ w przypadku, gdy nie znaleziono dopasowania
fromlast=0,int (parametr ‘nomatch’).
nomatch=0)
1.5.15 Operatory
Operacja + data operator + (const d+1.5 Dodawanie elementu 't' do obiektu 'a'. Element (liczba lub tekst) jest dodawany do kazdego elementu
data &a,const T t) obiektu.
“ABC"+d
data operator + (const T Dodawanie dwdch obiektow o zgodnych rozmiarach ('a' do 'b') . Dodawanie odbywa sie po pozycjach.
t,const data &a) dte
W przypadku liczb operacja + sumuje wartosci. W przypadku tekstéw operacja + scala teksty.
data operator + (const
data &a,const data &b)
Operacja += void operator +=(const d+=e Dodawanie analogiczne do +, ale przyrostowo na obiekcie.
data &a)
d+=1.5
void operator +=(const T
d+="ABC”

t)

33

Poréwnanie int compare<>(const data |compare(d,e) Zwraca wynik poréwnania obiektéw 'a'i 'b'". Jesli jednakowe, zwraca 1 (true). Jesli rézne, zwraca 0 (false).
&a,const data &b)
==, I=, <, >, <=, >= vector operator == (const |d<=e Poréwnanie wektorédw 'a'i 'b' po pozycjach. Zwraca wektor zero-jedynkowy (0 — false, 1 — true).
data &a,const data &b)
d>e
itd.
==, 15, <, >, <=, >= vector operator ==(const |d<=1.5 Poréwnanie wektora 'a' ze statg 'u’, ktéra moze byc typu liczba, tekst lub data. Zwraca wektor zero-
data &a,const U u) jedynkowy (0 —false, 1 — true).
d <= “ABC”

itd.

d <= Text(“ABC")

d <= d(“2012-01-01")

1.5.16 Sortowanie

Sortowanie wektora vector sort(data sort(d) Sortowanie wektora ‘v'. Mozna wybrac¢ kierunek sortowania (parametr ‘dir’) i czy sortowac etykiety
&v,Direction (parametr ‘sort_labels’). Mozliwe kierunki sortowania ASCENDING (rosngco) i DESCENDING (malejaco).
dir=ASCENDING,int
sort_labels=1)

Sortowanie dualne void sort(data &v1,data sort(d,e) Sortowanie dualne wektoréw. Sortowany jest wektor ‘v1’. Kolejnos¢ przypadkéw w ‘v2’ jest taka sama jak

&v2,Direction
dir=ASCENDING, int
sort_labels=1)

kolejnos¢ posortowanego ‘v1’. Mozna wybrac kierunek sortowania (parametr ‘dir’) i czy sortowac etykiety
(parametr ‘sort_labels’)

Sortowanie danych

void sort(int no,Direction
dir=ASCENDING,int

d.sort(1,DESCENDING,

Sortowanie catych danych. Mozna okresli¢ numer lub nazwe wiersz/kolumny (parametr ‘no’/’name’),

34

sort_rows=1)

void sort(Text
name,Direction
dir=ASCENDING, int
sort_rows=1)

0)

d.sort(“WIEK”,DESCEN
DING,1)

kierunek sortowania (‘dir’) oraz czy sortowac wiersze, czy kolumny (‘sort_rows’).

W pierwszym przypadku ‘d’ jest sortowana malejgco. Na podstawie pierwszego wiersza sg sortowane
kolumny.

W drugim przypadku ‘d’ jest sortowana malejgco. Na podstawie kolumny ,WIEK” sg sortowane wiersze.

Kolejnos¢ danych vector order(const data order(d) Zwracany jest wektor kolejnosci po posortowaniu ‘v'. Mozna wybraé kierunek sortowania (parametr ‘dir’).
&v,Direction
dir=ASCENDING)
1.5.17 Operacje na zbiorach
Elementy unikalne data unique(const data unique(d) Zwraca elementy unikalne wektora danych. Mozna wybra¢ kolejnos¢ dziatania funkcji — od poczatku wektora

&v,int fromlast=0)

lub od konca (parametr ‘fromlast’)

Czy element

int iselement(T t,const
data &v)

iselement(“KOT”,d)

Sprawdza, czy dany element ‘t’ nalezy do zbioru ‘v’. Zwraca O - false lub 1 —true

Czy elementy

vector iselement(const
data &v1,const data &v2)

iselement(e,d)

Sprawdza, czy elemeny ‘v1’ nalezg do zbioru ‘v2’. Zwraca wektor zero-jedynkowy (O - false lub 1 — true)

Suma zbioréw

data setunion(const data
&,const data &)

setunion(d,e)

Zwraca sume zbioréw

lloczyn zbioréw

data setintersect(const
data &,const data &)

setintersect(d,e)

Zwraca iloczyn zbioréw

Roéznica zbiorow

data setdiff(const data

setdiff(d,e)

Zwraca roznice zbiorow

35

&,const data &)

Czy rowne zbiory

int setequal(const data
&,const data &)

setequal(d,e)

Zwraca 1 (true), jesli zbiory sg rowne. Zwraca 0 (false), jesli zbiory sg rdzne

1.5.18 Operacje plikowe

Wczytanie danych z
pliku tekstowego /
zapis do pliku
tekstowego

int readtxt(const char
*name,int
show_progress=0,int
row_lab=1,int
col_lab=1,int
quote=0,char
col_sep="\t',int
show_open_err=1)

int writetxt(const char
*name,int
show_progress=0,int
row_lab=1,int
col_lab=1,int
quote=0,char
col_sep="\t',char
dec_sep=',',int
show_open_err=1)

d.readtxt(“plik.txt”)

d.writetxt(“plik.txt”)

Odczyt / zapis danych. Mozliwe parametry:

- name — nazwa pliku

- show_progress — czy pokazywac postep odczytu/zapisu (domyslnie nie)
- row_lab — czy plik z etykietami wierszy (domysinie tak)

- col_lab — czy plik z etykietami kolumn (domyslInie tak)

- quo te — czy elementy ujete w cudzystow (domysinie nie)

- col_sep — separator kolumn (domyslnie tabulator)

- dec_sep — separator dziesietny (domyslInie przecinek)

- show_open_err — czy komunikowa¢ btedy (domysinie tak)

Funkcje zwracajg 0, jesli nie ma btedu. W innym przypadku 1.

Bezpieczne wczytanie
danych z pliku
tekstowego /
bezpieczny zapis

void sreadtxt(const char
*name,int
show_progress=0,int
row_lab=1,int

d.sreadtxt(“plik.txt”)

d.swritetxt(“plik.txt”)

Bezpieczny odczyt / zapis. Jesli plik jest zajety, funkcja czeka na jego zwolnienie. Parametry jak przy zwyktym
odczycie / zapisie. Inne parametry:

- repeat_time — czas po jakim nastepujg proby dostepu do pliku (domysinie 1 sek.)

36

danych do pliku
tekstowego

col_lab=1,int
quote=0,char
col_sep="\t',int
repeat_time=1)

void swritetxt(const char
*name,int
show_progress=0,int
row_lab=1,int
col_lab=1,int
quote=0,char
col_sep="\t',char
dec_sep=',,int
repeat_time=1)

1.5.19 Wyswietlanie, kasowanie

Wyswietlanie void display(Text d.display() Obiekt jest wyswietlany w konsoli. Mozna podac jego nazwe (parametr ‘name’).
name="")
Kasowanie void free() d.free() Obiekt jest kasowany. Zwalniana jest pamie¢, z ktorej korzystat.

37

1.6 Macierz (matrix)

1.6.1 Deklaracja zmiennej

Metoda

Utworzenie puste;j
macierzy

Deklaracja metody

matrix()

Przyktad wywotania Opis dziatania

matrix m

Tworzona jest pusta macierz

Utworzenie macierzy o
zadanych wymiarach

matrix(int m,int n)

matrix m(5,3)

Tworzona jest macierz o wymiarach m x n (m wierszy, n kolumn).

W tym przypadku tworzona jest macierz 5x3 (5 wierszy, 3 kolumny).

Utworzenie macierzy o
zadanym wymiarze

matrix(int m)

matrix m(3)

Tworzona jest macierz wymiarach m x m.

W tym przypadku tworzona jest macierz 3x3.

Utworzenie macierzy z
liczby

matrix(double c)

matrix m(3.12)

Tworzona jest macierz o wymiarach 1x1, z elementem réwnym 'c'.

W tym przypadku element macierzy 1x1 ma wartos¢ 3.12.

Utworzenie macierzy na
podstawie napisu

matrix(const char
*matrix_str)

matrix m="12;3 4"

m="12;\
34"

Tworzona jest macierz na podstawie napisu. Elementy w wierszu oddziela sie spacjami, a Srednik oznacza
przejscie do nowego wiersza.

W pierwszym przyktadzie powstaje macierz o wymiarach 2x2. Te samg macierz dzieki symbolowi kontynuacji
\ mozna zadeklarowa¢ w dwdch wierszach i wéwczas jej zapis jest zgodny z naturalnym.

1.6.2 Konwersja

38

Konwersja na liczbe operator int() int(d) Macierz o wymiarach 1x1 zamieniana jest na liczbe catkowita. Jesli ma inne wymiary, pojawia sie komunikat
catkowita btedu
Konwersja na liczbe operator double() double(d) Macierz o wymiarach 1x1 zamieniana jest na liczbe rzeczywistg. Jesli ma inne wymiary, pojawia sie

rzeczywista

komunikat btedu

Konwersja na wektor
liczb catkowitych

vector as_vector(const
matrix &m)

as_vector(d)

Jesli macierz ‘m’ ma jeden z wymiaréw réwny 1 (jest wektorem), to jest zwracany wektor liczb catkowitych
(vector) utworzony na jej podstawie. Jesli ‘m’ ma inne wymiary, pojawia sie komunikat btedu. Rzeczywiste
wartosci elementéw sg konwertowane na liczby catkowite. Obiekt wynikowy nie ma etykiet.

1.6.3 Tworzenie

Wektor statych

matrix vd(intl ,...)

vd(4, 0.2, 1.5, -3.85,
10.0)

Tworzenie wektora wierszowego o dtugosci |, wypetnionego podanymi statymi.
W tym przypadku powstaje wektor [0.2, 1.5, -3.85, 10.0]

Jako state nalezy podawac liczby rzeczywiste (musi wystgpic kropka).

Sekwencje liczb matrix seq(double seq(1,9) Tworzenie wektora wierszowego zawierajgcego sekwencje liczb od 'a' do 'b', krokiem 1 lub 'step'.
a,double b)
seq(1,2,9) W pierwszym przypadku powstaje wektor [1, 2, 3,4, 5, 6, 7, 8, 9]
seq(double a,double
step,double b) W drugim przypadku powstaje wektor [1, 3, 5, 7, 9]
matrix seq(int a,int b)
matrix seq(int a,int
step,int b)
Wektory liniowe matrix linspace(double linspace(1,2,5) Tworzenie wektora o dtugosci n, zawierajgcego liczby z przedziatu od 'a' do 'b'. Domyslnie dtugos¢ wynosi

39

a,double b,int n=100)

100.

W tym przypadku powstaje wektor [1.0, 1.25, 1.5, 1.75, 2.0]

Macierz zerowa matrix zeros(int m,int n) zeros(5,3) Tworzenie macierzy o wymiarach m x n wypetnionej zerami.

matrix zeros(int m) zeros(5) Tworzenie macierzy o wymiarach m x m wypetnionej zerami.
Macierz jedynkowa matrix ones(int m,int n) ones(5,3) Tworzenie macierzy o wymiarach m x n wypetnionej jedynkami.

matrix ones(int m) ones(5) Tworzenie macierzy o wymiarach m x m wypetnionej jedynkami.
Macierz z rozktadu matrix rand(int m,int n) rand(5,3) Tworzenie macierzy o wymiarach m x n wypetnionej liczbami z rozktadu jednostajnego z przedziatu [0,1].
jednostajnego

matrix rand(int m) rand(5) Tworzenie macierzy o wymiarach m x m wypetnionej liczbami z rozktadu jednostajnego z przedziatu [0,1].
Macierz z rozktadu matrix randn(int m,int n) |randn(5,3) Tworzenie macierzy o wymiarach m x n wypetnionej liczbami z rozktadu normalnego o parametrach (0,1).
normalnego

matrix randn(int m) randn(5) Tworzenie macierzy o wymiarach m x m wypetnionej liczbami z rozktadu normalnego o parametrach (0,1).
Macierz matrix eye(int m,int n) eye(5,3) Tworzenie macierzy o wymiarach m x n wypetnionej zerami, a na gtéwnej przekatnej jedynkami.
identycznos$ciowa

matrix eye(int m) eye(5) Tworzenie macierzy o wymiarach m x m wypetnionej zerami, a na gtéwnej przekatnej jedynkami.
Macierz diagonalna / matrix diag(const matrix m = diag(v) 1) Jedli 'a' jest wektorem, to tworzona jest macierz kwadratowa wypetniona zerami, a na gtéwnej przekatnej
Przekatna gtéwna &a) wektorem 'a'.

v = diag(m)

2) Jesli 'a' jest macierzg, to tworzeny jest wektor na podstawie przekatnej macierzy 'a'.

Tworzenie na
podstawie wektorow i
funkcji arytmetycznej

matrix outer(const matrix
&v1,const matrix
&v2,char fun)

outer(c(1,2,3,4),c(1,2,
3,4),"*")

Tworzona jest macierz, ktérej elementy sg wynikiem funkcji zdefiniowanej znakiem 'fun' z argumentami
pochodzacymi z wektora v1 i v2. Mozliwe s3 funkcje: +, -, *, /. Elementy obiektu wyjsciowego o
wspotrzednych (i,j) przyjmujg wartosci fun(v(i),v2(j)).

W tym przypadku zwracana jest tabliczka mnozenia do 16.

40

1.6.4 Wypelnianie

Zerowanie void zeros() m.zeros() Macierz jest zerowana.
Wypetnianie jedynkami |void ones() m.ones() Macierz jest wypetniana jedynkami.
Wypetnianie void rand() m.rand() Macierz jest wypetniana wartosciami z rozktadu jednostajnego [0,1].
wartosciami z rozktadu
jednostajnego
Wypetnianie void randn() m.randn() Macierz jest wypetniana wartosciami z rozktadu normalnego o parametrach (0,1).
wartosciami z rozktadu
normalnego
Wypetnianie void eye() m.eye() Macierz jest wypetniana zerami, a na gtéwnej przekatnej jedynkami.
identycznosciowe
Wypetnianie void test(double m.test() Macierz jest wypetniana wartosciami testowymi (kolejne liczby catkowite). Etykiety przyjmujg standardowe
wartosciami testowymi |t=0.0,Text e="") nazwy (R1, R2, itd. C1, C2 itd.). Wartosci moga by¢ przesuniete o statg 't', a etykiety moga mie¢ dotaczony z
przodu czton 'e'.
1.6.5 Podstawowe operacje
Wartos¢ bezwzgledna matrix abs(const matrix abs(m) Tworzona jest macierz wypetniona wartosciami bezwzglednymi elementéw 'a'.
&a)
m.abs() Nakfadana jest funkcja abs na elementy.

void abs()

41

Podniesienie matrix sqr(const matrix sqr(m) Tworzona jest macierz wypetniona kwadratami elementéw 'a'.

elementow do &a)

kwadratu m.sqr() Nakfadana jest funkcja 22 na elementy.
void sqr()

Unormowanie matrix norm(const matrix |norm(m) Tworzona jest macierz z unormowanymi elementami 'a’. Unormowane wartosci sg z przedziatu [0,1].
&a)

m.norm() Macierz jest normowana.

void norm()

Minimum matrix min(const matrix min(m) Znajdowane jest minimum elementow kazdej kolumny (lub wiersza, jesli macierz jest wektorem
&a) wierszowym). W wyniku zwracany jest wektor (lub macierz 1x1).

Maksimum matrix max(const matrix max(m) Znajdowane jest maksimum elementéw kazdej kolumny (lub wiersza, jesli macierz jest wektorem
&a) wierszowym). W wyniku zwracany jest wektor (lub macierz 1x1).

Licznik matrix count(const matrix |count(m) Zliczane sg elementy liczbowe rézne od NAN kazdej kolumny (lub wiersza, jesli macierz jest wektorem
&a) wierszowym). W wyniku zwracany jest wektor (lub macierz 1x1).

Suma matrix sum(const matrix sum(m) Woyliczana jest suma elementéw kazdej kolumny (lub wiersza, jesli macierz jest wektorem wierszowym). W
&a) wyniku zwracany jest wektor (lub macierz 1x1).

Suma kwadratéw matrix sumsqr(const sumsqr(m) Wyliczana jest suma kwadratéow elementéw kazdej kolumny (lub wiersza, jesli macierz jest wektorem
matrix &a) wierszowym). W wyniku zwracany jest wektor (lub macierz 1x1).

lloczyn matrix prod(const matrix |prod(m) Wyliczany jest iloczyn elementéw kazdej kolumny (lub wiersza, jesli macierz jest wektorem wierszowym). W
&a) wyniku zwracany jest wektor (lub macierz 1x1).

Suma skumulowana matrix cumsum(const cumsum(m) Wyliczana jest suma skumulowana elementéw kazdej kolumny (lub wiersza, jesli macierz jest wektorem
matrix &a) wierszowym).

lloczyn skumulowany matrix cumprod(const cumprod(m) Wyliczany jest iloczyn skumulowany elementéw kazdej kolumny (lub wiersza, jesli macierz jest wektorem
matrix &a) wierszowym).

Przeciwienstwo void minus() m.minus() Elementy macierzy s3 zamieniane na przeciwne.

42

1.6.6 Operacje statystyczne

Wartosc¢ srednia matrix mean(const matrix |mean(m) Obliczana jest wartos$¢ srednia elementéw kazdej kolumny (lub wiersza, jesli macierz jest wektorem

(oczekiwana) &a) wierszowym). W wyniku zwracany jest wektor (lub macierz 1x1).

Wariancja matrix var(const matrix var(m) Obliczana jest wariancja elementow kazdej kolumny (lub wiersza, jesli macierz jest wektorem wierszowym).
&a) W wyniku zwracany jest wektor (lub macierz 1x1).

Odchylenie matrix stdev(const matrix |stdev(m) Obliczane jest odchylenia standardowe elementéw kazdej kolumny (lub wiersza, jesli macierz jest wektorem

standardowe &a) wierszowym). W wyniku zwracany jest wektor (lub macierz 1x1).

Mediana matrix median(const median(m) Obliczana jest mediana elementéw kazdej kolumny (lub wiersza, jesli macierz jest wektorem wierszowym).
matrix &a) W wyniku zwracany jest wektor (lub macierz 1x1).

Moda matrix mode(const matrix |mode(m) Obliczana jest moda elementéw kazdej kolumny (lub wiersza, jesli macierz jest wektorem wierszowym). W

&a)

wyniku zwracany jest wektor (lub macierz 1x1).

Kwantyl / kwantyle

matrix quantile(const
matrix &a,double c)

matrix quantile(const
matrix &a,const matrix
&v)

quantile(m,0.5)

quantile(m,c(0.25,
0.75))

Obliczany jest kwantyl elementdéw kazdej kolumny (lub wiersza, jesli macierz jest wektorem wierszowym). W
wyniku zwracany jest wektor (lub macierz 1x1). Mozna wyliczy¢ kwantyl dla jednej wartosci 'c' lub kilka
kwantyli zdefiniowanych w wektorze 'v'.

W pierwszym przypadku obliczany jest kwantyl 50%.

W drugim przypadku obliczany sg kwantyle 25% i 75%.

Crossproduct matrix crossprod(const crossprod(m) Obliczana jest suma iloczynéw kazdej kolumny z kazdg macierzy 'a'.
matrix &a)
Kowariancja matrix cov(const matrix cov(m) Obliczana jest kowariancja kazdej kolumny z kazdg macierzy 'a'.

&a)

43

Korelacja matrix cor(const matrix cor(m) Obliczana jest korelacja kazdej kolumny z kazdg macierzy 'a'.
&a)
Histogram matrix hist(const matrix hist(m) Wyznaczany jest histogram dla kazdej kolumny. Wynik jest macierza z podanymi udziatami w przedziatach.

&a)

1.6.7 Ogdlne podsumowanie

Podsumowanie kolumn

matrix summarise(double
f(const matrix &))

m.summarise(funl)

Dla kazdej kolumny (lub wiersza, jesli macierz jest wektorem wierszowym) wyliczania jest wartosc¢ funkcji f.
Funkcja f ma dziata¢ na wektorze i zwracac jedng liczbe. W wyniku zwracany jest wektor (lub macierz 1x1).

Podsumowanie kolumn
z parametrem

matrix summarise(double
f(const matrix
&,double),double)

m.summarise(fun2,
3.5)

Dla kazdej kolumny (lub wiersza, jesli macierz jest wektorem wierszowym) wyliczania jest wartos¢ funkgji f.
Funkcja f ma dziata¢ na wektorze, posiada¢ dodatkowy parametr liczbowy i zwracaé jedng liczbe. W wyniku
zwracany jest wektor (lub macierz 1x1).

1.6.8 Operacje dwuargumentowe

Minimum
dwuargumentowe

matrix min(const matrix
&a,const matrix &b)

matrix min(const matrix
&a,const double c)

matrix min(const double
c,const matrix &a)

min(m1,m2)

min(m,20)

Minimum po pozycjach macierzy 'a'i'b'.

Minimum macierzy 'a' i statej 'c'.

44

Maksimum matrix max(const matrix max(m1,m?2) Maksimum po pozycjach macierzy 'a'i'b'".
dwuargumentowe &a,const matrix &b)
max(m,20) Maksimum macierzy 'a' i statej 'c'.

matrix max(const matrix

&a,const double c)

max(const double c,const

matrix &a)
Kowariancja double cov(const matrix cov(ml,m2) Kowariancja wektoréw 'a'i 'b'. W wyniku zwracana jest liczba.
dwuargumentowa &a,const matrix &b)
Korelacja double cor(const matrix cor(m1,m2) Korelacja wektoréw 'a'i'b'. W wyniku zwracana jest liczba.
dwuargumentowa &a,const matrix &b)
Suma warunkowa matrix sumif(const matrix |sumif(m,v) Suma warunkowa elementéw w kolumnach macierzy 'a'. Wektor 'v' definiuje, ktore wiersze bra¢ pod uwage

&a,const vector &v)

przy sumowaniu. Zwracany jest wektor wierszowy.

Srednia warunkowa

matrix meanif(const
matrix &a,const vector
&v)

meanif(m,v)

Srednia warunkowa elementéw w kolumnach macierzy 'a'. Wektor 'v' definiuje, ktére wiersze bra¢ pod
uwage przy usrednianiu. Zwracany jest wektor wierszowy.

1.6.9 Operatory

matrix operator +(const
matrix &a,const matrix
&b)

matrix operator +(const
matrix &a,const double c)

ml+m2

m+10.0

ml+=m2

m+=10.0

Umozliwiaja wykonywanie operacji arytmetycznych na dwdch macierzach lub macierzy i liczbie rzeczywistej.
Operacje +,-,*,/ s wykonywane po pozycjach.

45

matrix operator +(const
double c,const matrix &a)

void operator +=(const
matrix &a)

void operator +=(const
double c)

Mnozenie macierzowe

matrix mul(const matrix
&a,const matrix &b)

matrix mulT(const matrix
&a,const matrix &b)

mul(m1,m2)

mulT(m1,m2)

Mnozenie macierzowe.

Mnozenie macierzowe z transpozycjg. Odpowiada operacji mul(a,~b)

Podniesienie do matrix sqrT(const matrix |sqrT(m) Podniesienie do kwadratu z transpozycjg. Odpowiada operacji mul(a,~a).
kwadratu z &a)

transpozycja

Podniesienie do matrix sqrT2(const matrix |sqrT2(m) Podniesienie do kwadratu z transpozycjg wersja 2. Odpowiada operacji mul(~a,a).

kwadratu z
transpozycja 2

&a)

lloczyn skalarny

double scmul(const matrix
&a,const matrix &b)

scmul(m1,m2)

lloczyn skalarny.

Kwadrat skalarny double scsgr(const matrix |scsqr(m) Kwadrat skalarny.
&a)

Komutator double comut(const comut(mi1,m2) Komutator.
matrix &a,const matrix
&b)

Slad double trace(const matrix |trace(m) Slad macierzy.

&a)

46

Sinus matrix sin(const matrix sin(m) Sinus po elementach macierzy.
&a)
m.sin()
void sin()
Cosinus matrix cos(const matrix cos(m) Cosinus po elementach macierzy.
&a)
m.cos()
void cos()
Tangens matrix tan(const matrix tan(m) Tangens po elementach macierzy.
&a)
m.tan()
void tan()
Sinus hiperboliczny matrix sinh(const matrix sinh(m) Sinus hiperboliczny po elementach macierzy.
&a)
m.sinh()
void sinh()
Cosinus hiperboliczny matrix cosh(const matrix | cosh(m) Cosinus hiperboliczny po elementach macierzy.
&a)
m.cosh()
void cosh()
Tangens hiperboliczny | matrix tanh(const matrix |tanh(m) Tangens hiperboliczny po elementach macierzy.
&a)
m.tanh()
void tanh()
Arcus sinus matrix asin(const matrix asin(m) Arcus sinus po elementach macierzy.
&a)
m.asin()

void asin()

47

Arcus cosinus matrix acos(const matrix |acos(m) Arcus cosinus po elementach macierzy.
&a)
m.acos()
void acos()
Arcus tangens matrix atan(const matrix |atan(m) Arcus tangens po elementach macierzy.
&a)
m.atan()
void atan()
Eksponenta matrix exp(const matrix exp(m) Eksponenta po elementach macierzy.
&a)
m.exp()
void exp()
Logarytm matrix log(const matrix log(m) Logarytm po elementach macierzy.
&a)
m.log()
void log()
Logarytm dziesietny matrix log10(const matrix |log10(m) Logarytm dziesietny po elementach macierzy.
&a)
m.log10()
void log10()
Potega matrix pow(const matrix | pow(m,3.0) Potega po elementach macierzy.
&a, double d)
m.pow(3.0)
void pow(double d)
Potega catkowita matrix pow(const matrix pow(m,3) Potega catkowita po elementach macierzy.
&a, int d)
m.pow(3)
void pow(int d)
Pierwiastek matrix sqrt(const matrix sqrt(m) Pierwiastek po elementach macierzy.

48

&a) m.sqrt()
void sqrt()
Zaokraglenie w gore matrix ceil(const matrix ceil(m) Zaokraglenie w gore po elementach macierzy.
&a)
m.ceil()
void ceil()
Zaokraglenie w doét matrix floor(const matrix |floor(m) Zaokraglenie w dot po elementach macierzy.
&a)
m.floor()
void floor()
Zaprzeczenie matrix operator !(const Im Zaprzeczenie elementdw macierzy. Zera zamieniane sg na jedynki, inne wartosci na zera.
matrix &a)
Koniunkcja matrix operator &&(const |m1&&m?2 Koniunkcja po elementach macierzy 'a'i 'b'
matrix &a,const matrix
&b)
Alternatywa matrix operator | |(const |[m1]||m?2 Alternatywa po elementach macierzy 'a'i'b'
matrix &a,const matrix
&b)
==, =, g, >, <=, >= matrix operator ==(const |m1l==m2 Operatory poréwnania umozliwiajg poréwnanie macierzy 'a' i 'b' po pozycjach. Macierze nie muszg by¢
matrix &a,const matrix wektorami, jak to jest w przypadku operatoréw dziedziczonych z obiektu data.
ml<m2

&b)

itd.

49

1.6.10 Algebra liniowa

Projekcja matrix proj(const matrix proj(mi1,m2) Projekcja 'a' na'b'
&a,const matrix &b)
Norma double norm2(const norm2(m) Norma w przestrzeni R2.

matrix &a)

Ortonormalizacja

void orthonorm()

m.orthonorm()

Ortogonalizacja Grama-Schmidta z normalizacjg

Dekompozycja QR

void QR_decomp(const
matrix &a,matrix
&Q,matrix &R)

QR_decomp(m,Q,R)

Dekompozycja macierzy 'a' na macierz ortogonalng Qi tréjkatng R

Dekompozycja LU

void LU_decomp(const
matrix &a,matrix
&LU,matrix &pivot,int
&pivsign)

LU_decomp(m,LU,piv
ot,pivsign)

Dekompozycja macierzy 'a' na dwie macierze trdjkatne Li U (dolng i gérng). W wyniku zwracane jest ztozenie
LU, macierz przestawien 'pivot' i znak przestawien 'pivsign'.

Wyznacznik double det(const matrix det(m) Wyznacznik macierzy.
&a)
Rozwigzywanie uktadu | matrix linegns(const linegns(m,v) Zwraca rozwigzanie uktadu réwnan liniowych danego macierzg 'a' i kolumng 'b'. Za pomocga parametru 'met’
réwnan matrix &a,const matrix mozna wybra¢ metode {GAUSS, QR_DECOMP, LU_DECOMP}. Domyslnie jest stosowana metoda eliminacji
&b, LinearMethod Gaussa.
met=GAUSS)
Macierz odwrotna matrix inv(const matrix inv(m) Macierz odwrotna. Za pomocg parametru 'met' mozna wybra¢ metode {GAUSS, QR_DECOMP,

&a,LinearMethod

LU_DECOMP}. Domyslinie jest stosowana dekompozycja LU.

50

met=LU_DECOMP)

1.6.11 Regresja liniowa i inne metody numeryczne

Sweeping

void linreg_sweep(int
k1,int k2)

m.linreg_sweep(1,10)

Sweeping macierzy dla kolumn od k1 do k2.

Regresja liniowa

matrix linreg(const matrix
&a,const matrix &b)

linreg(m,v)

Regresja liniowa dla zmiennych objasniajacych 'a' i zmiennej objasnianej 'b'.

Sweeping warunkowy

void linreg_sweep_c(int
k1,int k2,const matrix
&cond,int dep)

m.linreg_sweep_c(1,1
0,v,10)

Sweeping macierzy dla kolumn od k1 do k2, wskazanych przez wektor zero-jedynkowy 'cond'. Parametr 'dep'
okresla numer zmienne objasnianej.

Regresja liniowa
warunkowa

matrix linreg_c(const
matrix &cross,const
matrix &cond,int dep)

linreg_c(iloczyny,wybr
ane,10)

Regresja liniowa. Parametr cross to macierz iloczynéw zmiennych objasniajgcych i zmiennej objasniane;j.
Parametr cond to wektor zero-jedynkowy wskazujacy zmienne do wykorzystania, 'dep' okresla numer
zmiennej objasniajgcej w macierzy cross.

Wygtadzanie

matrix smooth(const
matrix &v,int m,int n);

smooth(v,1,3)

Wygtadzanie za pomocg wielomiandw interpolacyjnych. Parametr 'm' okresla stopien wielomianu
interpolacyjnego (od 1 do 5), parametr 'n' liczbe punktéw do usrednienia (oczekiwana jest liczba
nieparzysta).

W tym przypadku wyznaczana jest 3-punktowa srednia ruchoma.

1.6.12 Operacje na plikach binarnych

51

Zapis do pliku

void writebin(FILE *f)

m.writebin(f)

Macierz jest zapisywana do pliku.

Odczyt z pliku

void readbin(FILE *f)

m.readbin(f)

Macierz jest odczytywana z pliku.

52

1.7 Tabela (table)

1.7.1 Deklaracja zmiennej

Deklaracja metody

Przyktad wywotania

Opis dziatania

Utworzenie pustej tabeli [table() table t Tworzona jest pusta tabela
Utworzenie tabeli o table(int m,int n) table t(5,3) Tworzona jest tabela o wymiarach m x n (m wierszy, n kolumn).
zadanych wymiarach
W tym przypadku tworzona jest tabela 5x3 (5 wierszy, 3 kolumny).
1.7.2 Konwersja
Konwersja na macierz operator matrix() matrix(t) Tabela jest zamieniana w macierz. Aby operacja byta mozliwa, konieczne jest wypetnienie tablicy

elementami tekstowymi, ktére konwertuja sie na liczby rzeczywiste.

1.7.3 Wybér etykiet

Wybor nazw kolumn

table colnames(const
table &)

colnames(t)

Etykiety kolumn sg zwracane jako tabela.

Wybdr nazw wierszy

table rownames(const

rownames(t)

Etykiety wierszy sg zwracane jako tabela.

53

table &)

1.7.4 Tabela testowa

Wypetnianie
wartosciami testowymi

void test(Text p="",Text
e=|lll)

t.test()

Tabela jest wypetniana wartosciami testowymi (kolejne liczby catkowite). Etykiety przyjmujg standardowe
nazwy (R1, R2, itd. C1, C2 itd.). Elementy mogg by¢ poprzedzone tekstem 'p’, a etykiety mogg miec
dotgczony z przodu czton 'e'.

1.7.5 Operacje wyboru i faktorowe

Wybor lub kasowanie
kolumn lub wierszy

table select(const table
&names,int cols=1,int
del=0)

t.select(c(”C1”,”C3"))

Z tabeli s3 wybierane lub kasowanie wskazane kolumny lub wiersze. Jezeli cols=1, to operacja dotyczy
kolumn. Jezeli cols=0, to operacja dotyczy wierszy. Jezeli del=0, to nastepuje wybieranie. Jezeli del=1, to
nastepuje kasowanie.

Wybieranie kolumn o
zadanych
wiasciwosciach

table select_if(int f(const
table &))

t.select_if(funkcja)

Z tabeli s3 wybierane kolumny o zadanych wtasciwosciach. Argument ‘f’ to dowolna funkcja dziatajgca na
pojedynczej kolumnie i zwracjgca wartos¢ logiczng 0 lub 1 (0 — odrzu¢ kolumne, 1 — zostaw kolumne).
Przyktadowo ‘" moze wykrywa¢ specyficzne wartosci w kolumnie lub okresla¢ jej typ.

Podsumowanie w
grupach

table summarise(const
table &names, Text
formula,matrix f(const
matrix &)=sum, ...)

t.summarise(c(”ROK”,
"MARKA”),”SR_POJ=f(
POJ)”,mean)

Funkcja grupuje dane wedtug pdl, ktérych nazwy sg zdefiniowane jako names. W grupach wyliczane jest
podsumowanie wedtug wzoru formula. Formute definiuje sie w postaci: ,,nazwa_wyniku =
f(nazwa_zmiennej)”. Nazwa_wyniku to dowolna nazwa, ktdra pojawi sie jako kolumna w wyniku zwracanym
przez summarise. Nazwa_zmiennej to nazwa dowolnej kolumny w tabeli, dla ktérej wywotuje sie
podsumowanie. Funkcje podsumowujacg definiuje parametr ‘f — moze to by¢ jedna ze standardowych
funkcji macierzowych (count, sum, mean, min, max itd.) lub dowolna funkcja uzytkownika. Domyslnie uzyta
bedzie funkcja sum.

54

W jednym wywotaniu summarise mozna podac¢ do 10 formut i funkcji i wyliczy¢ kilka podsumowan.

W przyktadzie wykonanie zostanie grupowanie tabeli ‘t’ wedtug zmiennych ROK i MARKA i w grupach
wyliczona zostanie zmienna SR_POJ jako $rednia ze zmiennej POJ.

Przedziatowanie table cut(const table cut(t,c(1,2,3)) Zmienna dana wektorem X jest przedziatowana. Przedziaty sg zdefiniowane granicami przez parametr
Zmiennej &X,const matrix 'breaks'. Parametr 'right' okresla, czy przedziaty majg by¢ prawostronnie domkniete (domyslinie tak).
&breaks,int right=1)
Wektor X moze tez by¢ typu matrix.
Poziomy zmiennej table levels(const table levels(t) Wyznaczane sg poziomy wektora X.
&X)
Wektor X moze tez by¢ typu matrix.
Tabela wystgpien table pivot(const table pivot(t) Wyliczana jest liczba wystapien kazdego poziomu wektora X. Jesli argumentow jest wiecej niz 1, to wyliczane
&X) sg wystapienia dla kazdej kombinacji poziomdéw wszystkich argumentdw.
pivot(t1,t2)

table pivot(const table
&X1,const table &X2)

table pivot(const table
&X1,const table
&X2,const table &X3)

Wektory X moga tez by¢ typu matrix.

Zastosowanie funkcji do
danych

table apply(const table
&X,const table
&index,matrix f(const
matrix &))

table apply(const table
&X,const table
&index,matrix f(const
matrix &,double),double

p)

apply(t,v,mean)

apply(t,v,quantile,0.25
)

W grupach zdefiniowanych przez 'index' wyliczane jest wartosé funkcji f(X).

Wektor X moze tez by¢ typu matrix.

W pierwszym przypadku wyliczane sg srednie wartosci 't' w grupach danych przez 'v'.

W drugim przypadku wyliczane sg pierwsze kwartyle wartosci 't' w grupach danych przez 'v'.

Funkcje mean i quantile s3 wbudowane w typ matrix. Mozna réwniez wykorzystywac wtasne funkcje.

55

1.7.6 Sortowanie

Sortowanie wedtug
wartosci

void sortval(int
no,Direction
dir=ASCENDING,int
sort_rows=1)

void sortval(Text
name,Direction
dir=ASCENDING,int
sort_rows=1)

sortval(10)

sortval(, WIEK”)

Tabela jest sortowana wedtug pola o numerze 'no'.
Tabela jest sortowana wedtug pola o etykiecie name.

W odrdznieniu od funkcji 'sort' dziedziczonej z typu data, to sortowanie jest przeprowadzane wedtug
wartosci liczbowych, a nie wedtug znakowych (liter). Mozna wybra¢ kierunek sortowania (parametr dir) oraz
czy sortowad wiersze, czy kolumny (parametr sort_rows). Mozliwe kierunki sortowania: ASCENDING -
rosngco, DESCENDING — malejgco. Domyslnie rosngco sortowane sg wiersze.

1.7.7 Tworzenie bazy do modelowania

Tworzenie bazy
numerycznej

table
build_numerical_base(con
st table &input,BaseVer
ver=NORM, int
show_progress=0,Text
na="0")

build_numerical_base

(t)

Tworzona jest baza numeryczna do modelowania na podstawie tabeli 'input'. Mozna wybraé sposéb
przygotowania pol (parametr ver), czy pokazywac postep (parametr show_progress) oraz jakie wartosci uzy¢
w miejsce brakow danych (parametr na). Mozliwe sposoby przygotowania to SIMP (prosty), NORM
(normalny), EXT (rozszerzony). Domyslnie tworzona jest baza sposobem normalnym, bez pokazywania
postepu.

Dla sposobu SIMP w wyniku zapisywane sg zmienne liczbowe uzupetnione zerami w miejscu brakéow i
zmienne binarne utworzone ze zmiennych kategorialnych.

Dla sposobu NORM w wyniku zapisywane sg te same zmienne co dla sposobu SIMP oraz dodatkowo
zmienne okreslajgce wypetnienie pdl (dotyczy pdl z brakujgcymi danymi).

Dla sposoby EXT wszystkie zmienne sg zamieniane na binarne. Zmienne kategorialne analogicznie jak w
sposobie SIMP/NORM. Zmienne liczbowe sg przedziatowane.

56

Tworzenie bazy
konstrukcyjnej i
walidacyjnej

void
constr_and_valid(Text
name_constr,Text
name_valid,double
percent_size,int
show_progress=0)

t.constr_and_valid(,,d
ane_konstr.txt”,”dane
_walid.txt”,0.75)

Tabela 't' dzielona jest losowo na czes¢ konstrukcyjng i walidacyjng. Wyniki zapisywane sg do plikéw o
nazwach name_constr i name_valid. Nalezy okresli¢ udziat danych konstrukcyjnych (parametr percent_size).
Mozna okresli¢, czy pokazywac postep (parametr show_progress). Domyslnie postep nie jest pokazywany.

Tworzenie bazy
numerycznej o
zadanych polach

void
build_numerical_with_col
umns(table
&tab_colnames,Text
name_data, Text
name_errors,int
show_progress=0,Text
na="0")

t.

build_numerical_with

_columns(nazwy_kolu
” n

mn,”nowe_dane.txt”,
bledy.txt”)

Na podstawie tabeli 't' tworzona jest baza numeryczna o zadanych polach (parametr tab_colnames). Wynik
zapisywany jest do pliku o nazwie name_data. Jezeli w tabeli 't' brakuje pdl niezbednych do ukoriczenia
operacji, pojawiajg sie btedy, ktore sg zapisywane do pliku o nazwie name_errors. Mozna okresli¢, czy
pokazywad postep (parametr show_progress). Domysinie postep nie jest pokazywany. Parametr 'na’
wskazuje, jakie wartosci zastosowaé w miejsce brakow danych.

57

1.8 Macierz rzadka (sparse)

Metoda Deklaracja metody Przyktad wywotania Opis dziatania

Utworzenie pustej sparse() sparse s Tworzona jest pusta macierz rzadka
macierzy rzadkiej

Utworzenie macierzy sparse(int m,int n) sparse s(10,20) Tworzona jest macierz rzadka o wymiarach m x n (m wierszy, n kolumn)
rzadkiej o zadanych

rozmiarach

Utworzenie macierzy sparse(const matrix &mat) |matrix m=zeros(5,5) Tworzona jest macierz rzadka na podstawie macierzy gestej.
rzadkiej na podstawie
macierzy gestej sparse s=sparse(m) W przyktadzie tworzona jest macierz gesta 'm', a nastepnie macierz rzadka 's'. Zaréwno 'm' jak i 's' to
macierze o wymiarach 5 x 5, wypetnione zerami.

Konwersja macierzy operator matrix() sparse s=spzeros(5,5) |Tworzona jest macierz gesta na podstawie macierzy rzadkiej.
rzadkiej na macierz
gesta matrix m=matrix(s) W przyktadzie tworzona jest macierz rzadka 's', a nastepnie macierz gesta 'm'. Zaréwno 's' jak i 'm' to

macierze o wymiarach 5 x 5, wypetnione zerami.

Konwersja macierzy operator double() double(s) Macierz rzadka o wymiarach 1x1 zamieniana jest na liczbe rzeczywista. Jesli ma inne wymiary, pojawia sie
rzadkiej na liczbe komunikat btedu
Liczba wierszy int sizel(const sparse &a) sizel(s) Zwraca liczbe wierszy macierzy

int nrow(const sparse &a) [nrow(s)

Liczba kolumn int size2(const sparse &a) size2(s) Zwraca liczbe kolumn macierzy

58

int ncol(const sparse &a) ncol(s)
Liczba elementow int nonzero(const sparse nonzero(s) Zwraca liczbe niezerowych elementéw macierzy
niezerowych &a)
(istotnych)
Czy zaindeksowana int indexed(const sparse indexed(s) Zwraca 1 (true), jesli macierz ma indeks elementéw; lub O (false), jesli nie ma.
&a)
Najmniejszy wiersz int minrow(const sparse minrow(s) Zwraca najmniejszy numer wiersza, w ktérym sg elementy niezerowe
istotny &a)
Najwiekszy wiersz int maxrow(const sparse maxrow(s) Zwraca najwiekszy numer wiersza, w ktdrym sg elementy niezerowe
istotny &a)
Najmniejsza kolumna int mincol(const sparse &a) |mincol(s) Zwraca najmniejszy numer kolumny, w ktérym sg elementy niezerowe
istotna
Najwieksza kolumna int maxcol(const sparse &a) [maxcol(s) Zwraca najwiekszy numer kolumny, w ktdrym sg elementy niezerowe
istotna
Czy element istnieje int iselem(int i,int j) iselem(2,7) Zwraca 1 (true), jesli element (i,j) wystepuje w macierzy; O (false), jesli nie wystepuje. Elementom macierzy
rzadkiej, ktére nie wystepujg, odpowiada wartos¢ 0.
Czy element jest int iszero(int,int) iszero(2,7) Zwraca 1 (true), jesli element (i,j) macierzy ma wartosc 0; O (false), w przeciwnym przypadku. True jest
niezerowy zwracane zaréwno, gdy element nie wystepuje, jak i gdy wystepuje i przyjmuje wartos¢ 0.
Indeksowanie void mkindex() s.mkindex() Macierz jest indeksowana. Indeks utatwia wyszukiwanie elementéw istotnych, dzieki czemu operacje na

macierzy sg wykonywane szybciej.

59

Kasowanie indeksu

void delindex()

s.delindex()

Indeks macierzy jest usuwany

Kopiowanie indeksu
(niskopoziomowe)

void cpyindex(const sparse
&src)

s.cpyindex(s2)

Macierz otrzymuje indeks skopiowany z macierzy src. Wymagane jest, aby obie macierze (zrédtowa i
docelowa) miaty te same wymiary; oprécz tego trzeba mie¢ pewnos¢, ze pozycje niezerowe w obu
macierzach sg na tych samych pozycjach.

Zmiana rozmiaru

void resize(int m_new,int
n_new)

s.resize(5,10)

Zmiana wymiaréw macierzy. Po zmianie macierz ma m_new wierszy i n_new kolumn. Zawartosé¢ macierzy
ulega skasowaniu.

Zmiana rozmiaru z

void resizec(int m_new, int

s.resizec(5,10)

Zmiana wymiaréw macierzy. Po zmianie macierz ma m_new wierszy i n_new kolumn. Zawartos¢ macierzy

zachowaniem n_new) jest zachowywana. Jesli nowe wymiary sg wieksze od pierwotnych, to elementy nie wystepujace w obiekcie
zawartosci pierwotnym pozostajg niewypetnione.
Pakowanie void pack() s.pack() Macierz jest pakowana. Po operacji pozostajg tylko elementy istotne (niezerowe).
Odpakowanie void unpack() s.unpack() Macierz jest rozpakowywana. Po operacji wszystkie elementy nieistotne sa reprezentowane w obiekcie
zerami.
Synchronizacja void synch(const sparse s.synch(s2) Macierz jest synchronizowana z macierzg src. Uzgadniana jest kolejnos¢ elementéw istotnych na liscie,
&src) dzieki czemu operacje, ktérych argumentami jest macierz zrédtowa i uzgodniona, sg wykonywane szybciej
(patrz = arytmetyka macierzy zsynchronizowanych).
Dostep do elementu double & operator ()(int s(2,3) Zwraca element z wiersza 'i' i kolumny 'j'.
i,int j)
Szybki dostep do double get(int i,int j) s.get(2,3) Zwraca element z wiersza 'i' i kolumny 'j'. Funkcja dziata szybciej niz operator ().

elementu

60

Szybkie wstawienie

void set(int i,int j,double d)

s.set(2,3,11.5)

Wstawia wartos¢ 'd' do elementu z wiersza 'i' i kolumny 'j'. Funkcja dziata szybciej niz operator ().

wartosci

Dostep do listy double & operator [J(int1) [s[15] Zwraca element o numerze 'l' z listy elementdéw istotnych macierzy.
elementéow

(niskopoziomowo)

Macierz pusta sparse spempty(int m,int n) [spempty(5,3) Tworzenie pustej macierzy rzadkiej o wymiarach m x n.

Macierz zerowa

sparse spzeros(int m,int n)

spzeros(5,3)

Tworzenie macierzy rzadkiej o wymiarach m x n wypetnionej zerami.

Macierz jedynkowa sparse spones(int m,int n) |spones(5,3) Tworzenie macierzy rzadkiej o wymiarach m x n wypetnionej jedynkami.

Macierz sparse speye(int m,int n) speye(5,3) Tworzenie macierzy rzadkiej o wymiarach m x n wypetnionej zerami, a na gtéwnej przekatnej jedynkami.

identycznosciowa

Macierz testowa sparse sptest(int m,int n) sptest(5,3) Tworzenie macierzy rzadkiej o wymiarach m x n wypetnionej wartosciami testowymi (kolejne liczby
naturalne)

Macierz losowa sparse sprand(int m,intn) [sprand(5,3) Tworzenie macierzy rzadkiej o wymiarach m x n wypetnionej liczbami z rozktadu jednostajnego z przedziatu
[0,1].

Wypetnianie zerami void zeros() s.zeros() Istotne elementy sg zerowane

Wypetnianie jedynkami |void ones() s.ones() Istotne elementy przyjmujg wartosc 1

Wypetnianie void fill(double c=1.0) s.fill(2.0) Istotne elementy sg wypetnianie statg ¢

Wypetnianie zer void fillo(double ¢=1.0) s.fill0(2.0) Istotne elementy wynoszgce 0 sg wypetnianie statg ¢

Losowe wypetnianie void rfill(double c=1.0) s.rfill(3.12) Istotne elementy sg wypetnianie liczbg losowa z rozktadu jednostajnego [0,c]

61

Losowe wypetnianie
zer

void rfillo(double c=1.0)

srfill0(1.5)

Istotne elementy wynoszgce 0 sg wypetnianie liczbg losowa z rozktadu jednostajnego [0,c]

Aplikowanie funkcji do
elementéow

sparse forall(const sparse
&s,double f(double))

void forall(double
f(double))

forall(s,f1)

s.forall(f1)

Na elementy macierzy nakfadana jest funkcja 'f'

Aplikowanie funkcji
dwuargumentowej do
elementéow

sparse forall(const sparse
&s,double
f(double,double),double d)

void forall(double
f(double,double),double d)

sparse forall(const sparse
&s,double f(double,int),int
i)

void forall(double
f(double,int),int i)

forall(s,f1,3.52)
s.forall(f1,3.52)
forall(s,f1,82)

s.forall(f1,82)

Na elementy macierzy naktadana jest funkcja dwuargumentowa 'f'. Drugi argument funkcji 'f' (parametr)
jest przekazywany do funkcji forall.

Wartos$¢ bezwzgledna |sparse abs(const sparse &a) |abs(s) Tworzona jest macierz rzadka wypetniona wartosciami bezwzglednymi elementéw 'a'.
void spabs() s.spabs()

Podniesienie sparse sqr(const sparse &a) |[sqr(s) Tworzona jest macierz rzadka wypetniona kwadratami elementéw 'a’.

elementéw do

kwadratu void spsqr() s.spsqr()

62

Suma double sum(const sparse sum(s) Wyliczana jest suma wszystkich elementéw macierzy 'a'.
&a)
Suma kwadratéw double sumsgr(const sumsqr(s) Wyliczana jest suma kwadratéw wszystkich elementéw macierzy 'a'.
sparse &a)
+, - sparse operator +(const sl+s2 Umozliwiaja wykonywanie operacji arytmetycznych na dwdch macierzach rzadkich lub macierzy rzadkiej i
sparse &a,const sparse &b) liczbie rzeczywistej. Operacje +, - s3 wykonywane po pozycjach.
sl+=s2
void operator +=(const
Sparse &a) $1+=10.0
void operator +=(const
double d)
*/ sparse operator *(const s1*¥10.0 Umozliwiaja wykonywanie operacji arytmetycznych na dwdch macierzach rzadkich lub macierzy rzadkiej i
sparse &a,const double d) liczbie rzeczywistej. Operacje *, / s3 wykonywane po pozycjach.
10.0%s1
sparse operator *(const
*—
double d,const sparse &a) s1*=10.0
void operator *=(const s1%s2
double d)
sparse operator *(const
sparse &a,const sparse &b)
Mnozenie macierzowe |[sparse mul(const sparse mul(s1,s2) Mnozenie macierzowe

&a,const sparse &b)

Dodawanie

sparse spplus(const sparse

spplus(sl,s2)

Dodawanie macierzy: a+b

63

&a,const sparse &b)

Zwiekszanie void addassign(const s.addassign(s2) Zwiekszanie macierzy: baza=baza+a
sparse &a)
Zwiekszanie i mnozenie |void addassign(double s.addassign(10.0,s2) Zwiekszanie i mnozenie macierzy: baza=baza*d+a
(wersja 1) d,const sparse &a)
Zwiekszanie i mnozenie |void addassign(const s.addassign(s2,10.0) Zwiekszanie i mnozenie macierzy: baza=baza+a*d

(wersja 2)

sparse &a,double d)

Odejmowanie

sparse spminus(const
sparse &a,const sparse &b)

spminus(s1,s2)

Odejmowanie macierzy: a-b

Odejmowanie i
mnozenie

sparse spminus(const
sparse &a,const sparse
&b,double d)

spminus(s1,s2,10.0)

Odejmowanie macierzy: a-b*d

Zmniejszanie

void subassign(const sparse
&a)

s.subassign(s2)

Zmniejszanie macierzy: baza=baza-a

Zmniejszanie i
mnozenie (wersja 1)

void subassign(double
d,const sparse &a)

s.subassign(10.0,s2)

Zmniejszanie macierzy: baza=baza*d-a

Zmniejszanie i
mnozenie (wersja 2)

void subassign(const sparse
&a,double d)

s.subassign(s2,10.0)

Zmniejszanie macierzy: baza=baza-a*d

Mnozenie sparse spmul(const sparse [spmul(si,s2) Mozenie macierzy po pozycjach: a*b
&a,const sparse &b)
Dzielenie sparse spdiv(const sparse spdiv(sl,s2) Dzielenie macierzy po pozycjach: a/b

&a,const sparse &b)

64

Przesuwanie wierszy

void shiftrows(int shift)

s.shiftrows(2)

Wiersze macierzy sg przesuwane o 'shift'.

W przyktadzie wiersze sg przesuwane o 2 w dot.

Przesuwanie kolumn

void shiftcols(int shift)

s.shifcols(-3)

Kolumny macierzy sg przesuwane o 'shift'.

W przyktadzie kolumny sg przesuwane o 3 w lewo.

Wczytanie int readtxt(char *name,int |s.readtxt("plik.txt") Woczytanie macierzy rzadkiej z pliku o nazwie 'name’. Parametr 'show_open_err' okresla, czy btedy odczytu
show_open_err=1) beda pokazywane. Funkcja ,readtxt” zwraca 0, jesli nie byto btedow; i 1, jesli byt btagd odczytu.
Zapisanie int writetxt(char *name,int |s.writetxt("plik.txt") Zapisanie macierzy rzadkiej do pliku o nazwie 'name'. Parametr 'show_open_err' okresla, czy btedy zapisu

show_open_err=1)

beda pokazywane. Funkcja , writetxt” zwraca 0, jesli nie byto btedow; i 1, jesli byt btagd zapisu.

Wyswietlanie void display(const char s.display("X") Macierz rzadka jest wyswietlana w konsoli. Nalezy poda¢ ‘name’ - nazwe, ktéra ma by¢ wyswietlona.
*name)
Listowanie elementéw |void list(const char *name) |s.list("X") Lista elementéw macierzy rzadkiej jest wyswietlana w konsoli. Nalezy poda¢ ‘name’ - nazwe, ktéra ma by¢
wyswietlona.
Pokazanie indeksu void index(const char s.index("X") Indeks macierzy rzadkiej jest wyswietlany w konsoli. Nalezy poda¢ ‘name’ - nazwe, ktéra ma by¢
*name) wyswietlona.
Wybér wiersza sparse row(const sparse row(s,2) Z macierzy 'a' wybierany jest wiersz o numerze 'i'.
&a,int i)
Transpozycja sparse operator ~(const ~s Transpozycja macierzy
sparse &a)
s.T()
void T()

65

Poréwnanie int compare(const sparse compare(sl,s2) Zwraca wynik poréwnania macierzy 'a' i 'b'. Jesli jednakowe, zwraca 1 (true). Jesli rézne, zwraca O (false).
&a,const sparse &b)
Kasowanie void free() s.free() Macierz jest kasowana. Zwalniana jest pamie¢, z ktérej korzystata.

66

1.9 Metody numeryczne (numproc)

Deklaracja metody Przyktad wywotania Opis dziatania

Catkowanie

numeryczne

double integral(double
f(double),double a,double
b,double tol)

integral(sin,0.0,2.0,1e-
6)

Zwraca wynik catkowania funkcji 'f' w przedziale [a,b]. Obliczenia sg przeprowadzane z doktadnoscia 'tol'

Pochodna numeryczna

double derivative(double
f(double),double x,double
tol)

derivative(cos,0.0,1e-
4)

Zwraca pochodnag funkgji 'f' w punkcie 'x'. Obliczenia sg przeprowadzane z doktadnoscig 'tol'

Wyszukiwanie
minimum funkcji

double fmin(double
f(double),double a,double
b,double tol)

fmin(funi,-2.0,2.0,1e-
9)

Znajduje i zwraca najmniejszg wartos¢ funkcji 'f' w przedziale [a,b]. Obliczenia sg przeprowadzane z
doktadnoscia "tol'

Wyszukiwanie miejsc
zerowych funkcji

double fzero(double
f(double),double x,double
tol)

fzero(fun2,10.0,1e-12)

Znajduje i zwraca miejsce zerowe funkcji 'f' w poblizu 'x'. Obliczenia sg przeprowadzane z doktadnoscig 'tol'

Wyszukiwanie
minimum funkcji
wielowymiarowej
metodg sympleksow

int fmins(double F(matrix
&),matrix &x,double tol)

fmins(FUN1,x,1e-9)

Znajdowane jest minimum funkcji wielowymiarowej F metodg sympleksow. 'x' musi by¢ wektorem
kolumnowym o dtugosci zgodnej z dtugoscig argumentu funkcji F. Poczatkowa wartos¢ 'x' powinna
znajdowac sie blisko rozwigzania. Obliczenia s3 przeprowadzane z doktadnoscia 'tol', a wynik jest zwracany
w zmiennej 'x'.

Wyszukiwanie
minimum funkcji
wielowymiarowej
metodg gradientéw

int fminu(double F(matrix
&),double dF(matrix
&,int),matrix &x,double
tol,EsMethod met=DFP)

fmins(FUN1,dFUN1,x,
le-9)

Znajdowane jest minimum funkcji wielowymiarowej F metoda gradientéw. Wymagana jest znajomos¢
pochodnej funkcji dF. 'x' musi by¢ wektorem kolumnowym o dtugosci zgodnej z dtugoscig argumentu funkcji
F. Poczatkowa wartos¢ 'x' powinna znajdowac sie blisko rozwigzania. Obliczenia sg przeprowadzane z
doktadnoscig 'tol', a wynik jest zwracany w zmiennej 'x'. Wybra¢ mozna metode 'met': DFP (Davidon-
Fletcher-Powell) lub BFS (Broyden-Fletcher-Shanno).

67

Wyszukiwanie
minimum funkcji
wielowymiarowej
metodg ztozong

int fminx(double F(matrix
&),double dF(matrix
&,int),matrix &x,double
tol,EsSpeed
speed=Normal,EsMethod
met=DFP)

fminx(FUN1,dFUN1,x,
le-9)

Znajdowane jest minimum funkcji wielowymiarowej F metodg ztozong. Wymagana jest znajomos¢
pochodnej funkcji dF. 'x' musi by¢ wektorem kolumnowym o dfugosci zgodnej z dtugoscig argumentu funkcji
F. Poczatkowa wartos¢ 'x' powinna znajdowac sie blisko rozwigzania. Obliczenia sg przeprowadzane z
doktadnoscig 'tol', a wynik jest zwracany w zmiennej 'x'. Wybra¢ mozna szybko$¢ estymacji 'speed': Slow,
Normal, Fast, Fastest; oraz metode 'met': DFP (Davidon-Fletcher-Powell) lub BFS (Broyden-Fletcher-
Shanno).

Btad dopasowania
funkcji do danych

double err_fit(const matrix
&X,const matrix &Y,double
F(double x,matrix
&par),matrix &par,EsType
es=LSE)

err_fit(X,Y,F,par)

Zwraca btagd dopasowania funkcji F o parametrach 'par' do danych (X - zmienna objasniajgca, Y — zmienna
objasniana). Typ estymacji definiuje parametr 'es', ktdry moze przyjmowaé wartosci LSE (najmniejszych
kwadratéw) lub MLE (najwiekszej wiarygodnosci).

Wywotanie funkcji dla
zestawu danych

matrix fun_fit(const matrix
&X,double F(double
x,matrix &par),matrix &par)

fun_fit(X,F,par)

Zwraca wektor wartosci funkcji F dla wektora argumentéw 'x' i parametrow 'par’.

Dopasowanie funkgcji
do danych metoda
sympleksow

int fits(const matrix
&X,const matrix &Y,double
F(double x,matrix
&par),matrix &par,double
tol,EsType es=LSE)

fits(X,Y,F,par,1e-
9,MLE)

Dopasowuje funkcje F o parametrach 'par' do danych (X - zmienna objasniajaca, Y — zmienna objasniana).
Stosowana jest metoda symplekséw. Poczgtkowa wartos¢ 'par' powinna znajdowac sie blisko rozwigzania.
Obliczenia sg przeprowadzane z doktadnoscig 'tol', a wynik jest zwracany w zmiennej 'par'. Typ estymacji
definiuje parametr 'es', ktéry moze przyjmowac wartosci LSE (najmniejszych kwadratow) lub MLE
(najwiekszej wiarygodnosci).

Dopasowanie funkgcji
do danych metoda
gradientow

int fitu(const matrix
&X,const matrix &Y,double
F(double x,matrix
&par),double dF(double
X,matrix &par,int
no_diff),matrix
&par,double tol,EsType
es=LSE,EsMethod

fitu(X,Y,F,dF,par,le-
9,MLE,BFS)

Dopasowuje funkcje F o parametrach 'par' do danych (X - zmienna objasniajgca, Y — zmienna objasniana).
Stosowana jest metoda gradientéw. Wymagana jest znajomos¢ pochodnej funkcji dF. Poczgtkowa wartosc
'par' powinna znajdowac sie blisko rozwigzania. Obliczenia sg przeprowadzane z doktadnoscia 'tol’, a wynik
jest zwracany w zmiennej 'par'. Typ estymacji definiuje parametr 'es', ktéry moze przyjmowac wartosci LSE
(najmniejszych kwadratéw) lub MLE (najwiekszej wiarygodnosci). Wybraé mozna metode 'met': DFP
(Davidon-Fletcher-Powell) lub BFS (Broyden-Fletcher-Shanno).

68

met=DFP)

Dopasowanie funkcji
do danych metoda
ztozong

int fitx(const matrix
&X,const matrix &Y,double
F(double x,matrix
&par),double dF(double
x,matrix &par,int
no_diff),matrix
&par,double tol,EsSpeed
speed=Normal,EsType
es=LSE,EsMethod
met=DFP)

fitx(X,Y,F,dF,par,1le-
9,MLE,BFS)

Dopasowuje funkcje F o parametrach 'par' do danych (X - zmienna objasniajaca, Y — zmienna objasniana).
Stosowana jest metoda ztozona. Wymagana jest znajomos¢ pochodnej funkcji dF. Poczgtkowa wartos¢ 'par’
powinna znajdowac sie blisko rozwigzania. Obliczenia sg przeprowadzane z doktadnoscig 'tol', a wynik jest
zwracany w zmiennej 'par'. Wybra¢ mozna szybkos¢ estymac;ji 'speed': Slow, Normal, Fast, Fastest; typ
estymacji: LSE (najmniejszych kwadratéw) lub MLE (najwiekszej wiarygodnosci); oraz metode 'met': DFP
(Davidon-Fletcher-Powell) lub BFS (Broyden-Fletcher-Shanno).

Btad dopasowania
funkcji
wielowymiarowej do
danych

double err_fit(const matrix
&X,const matrix &Y,double
F(matrix &x,matrix
&par),matrix &par,EsType
es=LSE)

err_fit(X,Y,F,par)

Zwraca btgd dopasowania wielowymiarowe] funkcji F o parametrach 'par' do danych (X - zmienne
objasniajace, Y —zmienna objasniana). Typ estymacji definiuje parametr 'es', ktéry moze przyjmowacé
wartosci LSE (najmniejszych kwadratéw) lub MLE (najwiekszej wiarygodnosci).

Wywotanie funkcji
wielowymiarowej dla
zestawu danych

matrix fun_fit(const matrix
&X,double F(matrix
&x,matrix &par),matrix
&par)

fun_fit(X,F,par)

Zwraca wektor wartosci wielowymiarowej funkcji F dla wektora argumentow 'x' i parametréw 'par'.

Dopasowanie funkcji
wielowymiarowej do
danych metoda
sympleksow

int fits(const matrix
&X,const matrix &Y,double
F(matrix &x,matrix
&par),matrix &par,double
tol,EsType es=LSE)

fits(X,Y,F,par,1e-
9,MLE)

Dopasowuje wielowymiarowg funkcje F o parametrach 'par' do danych (X - zmienne objasniajace, Y —
zmienna objasniana). Stosowana jest metoda symplekséw. Poczgtkowa wartosé 'par' powinna znajdowacd
sie blisko rozwigzania. Obliczenia sg przeprowadzane z doktadnoscig 'tol', a wynik jest zwracany w zmiennej
'par'. Typ estymacji definiuje parametr 'es’, ktéry moze przyjmowac wartosci LSE (najmniejszych
kwadratow) lub MLE (najwiekszej wiarygodnosci).

Dopasowanie funkgcji
wielowymiarowej do

int fitu(const matrix
&X,const matrix &Y,double

fitu(X,Y,F,dF,par,le-
9,MLE,BFS)

Dopasowuje wielowymiarowg funkcje F o parametrach 'par' do danych (X - zmienne objasniajace, Y —
zmienna objasniana). Stosowana jest metoda gradientéw. Wymagana jest znajomos$¢ pochodnej funkc;ji dF.

69

danych metoda
gradientow

F(matrix &x,matrix
&par),double dF(matrix
&x,matrix &par,int
no_diff),matrix
&par,double tol,EsType
es=LSE,EsMethod
met=DFP)

Poczatkowa wartosc¢ 'par' powinna znajdowac sie blisko rozwigzania. Obliczenia sg przeprowadzane z
doktadnoscia 'tol', a wynik jest zwracany w zmiennej 'par'. Typ estymacji definiuje parametr 'es’, ktéry moze
przyjmowac wartosci LSE (najmniejszych kwadratow) lub MLE (najwiekszej wiarygodnosci). Wybra¢ mozna
metode 'met': DFP (Davidon-Fletcher-Powell) lub BFS (Broyden-Fletcher-Shanno).

Dopasowanie funkcji
wielowymiarowej do
danych metodg ztozong

int fitx(const matrix
&X,const matrix &Y,double
F(matrix &x,matrix
&par),double dF(matrix
&x,matrix &par,int
no_diff),matrix
&par,double tol,EsSpeed
speed=Normal,EsType
es=LSE,EsMethod
met=DFP)

fitx(X,Y,F,dF,par,1le-
9,MLE,BFS)

Dopasowuje wielowymiarowg funkcje F o parametrach 'par' do danych (X - zmienne objasniajace, Y —
zmienna objasniana). Stosowana jest metoda ztozona. Wymagana jest znajomos¢ pochodnej funkcji dF.
Poczatkowa wartosc¢ 'par' powinna znajdowac sie blisko rozwigzania. Obliczenia sg przeprowadzane z
doktadnoscig 'tol', a wynik jest zwracany w zmiennej 'par'. Wybraé¢ mozna szybkos¢ estymacji 'speed': Slow,
Normal, Fast, Fastest; typ estymacji: LSE (najmniejszych kwadratéw) lub MLE (najwiekszej wiarygodnosci);
oraz metode 'met': DFP (Davidon-Fletcher-Powell) lub BFS (Broyden-Fletcher-Shanno).

70

1.10 Sie¢ neuronowa (neural_net)

Deklaracja metody Przyktad wywotania |Opis dziatania

Deklaracja sieci neural_net() neural_net nn Zadeklarowanie sieci neuronowej. W przyktadzie sie¢ ma nazwe 'nn’

neuronowej

Tworzenie sieci o neural_net(int i,int h,int neural_net Zadeklarowanie sieci neuronowej, posiadajacej 'i' wejsé, 'h' neurondw w warstwie ukrytej. Aktywacja
zadanej architekturze ha,int 0a) nn(1,2,logistic,linear) |warstwy ukrytej odbywa sig za pomoca funkcji 'ha’, a aktywacja warstwy wyjsciowej za pomoca funkgji ‘oa’.
warstw Numery i nazwy funkcji aktywacji:

0 — undefined (nieokreslona)

1
1—Iogistic(1+exp(_x))

2 —tanhyp (tanh(x))

3 —linear (X))

W przyktadzie powstaje sie¢ o jednym wejsciu, 2 neuronach ukrytych. Funkcje aktywacji sg typu 'logistic'.

Definiowanie wzorcow |void set_patterns(const nn.set_patterns(x,y,le |Definiowane sg wzorce uczace: 'p_in' - wejSciowe (zmienne objasniajgce), 'p_out' — wyjsciowe (zmienna
(danych) matrix &p_in,const matrix |arn_set) objasniana). Wybra¢ nalezy zbior 'set':
&p_out,int set=0) 0 —learn_set (zbiodr uczacy)

1 - valid_set (zbiér walidacyjny, pomocniczy przy uczeniu)
2 —test_set (niezalezny zbidr testowy)

W przyktadzie definiowany jest zbidr uczacy dla zmiennych x i zmiennej objasnianej y.
Liczba wzorcow int patterns(int set=0) nn.patterns(learn_set) [Liczba wzorcéw w danych zbiorze 'set'.

Informacja o danych void datainfo() nn.datainfo() Zbiorcza informacja o danych: liczba wzorcéw we wszystkich zbiorach danych (0, 1 2)

71

Wybor funkcji
aktywacji

void set_activ_fun(int
ha=logistic,int oa=logistic)

nn.set_activ_fun(logis
tic,linear)

Woybierane sg funkcje aktywacji dla warstwy ukrytej i wyjSciowej.

Inicjalizacja

void init(double c=0.02)

nn.init()

Inicjalizacja potgczen przed rozpoczeciem uczenia. Parametr 'c' okresla wielko$¢ parametréw losowych.

Prosta inicjalizacja

void init_simply(double
c=0.02)

nn.init_simply()

Prosta inicjalizacja potgczen przed rozpoczeciem uczenia. Inicjalizowane jest tylko po jednym potaczeniu od
kazdego wejscia. Parametr 'c' okresdla wielkos$é parametréw losowych.

Inicjalizacja
pojedynczego wejscia

void init_single_input(int
v_in,int h,int pos=1,double
c=0.02)

nn.init_single_input(1
0,5,1)

Inicjalizacja potaczen od danego wejscia. Wybiera sie numer wejscia 'v_in', liczbe aktywowanych neuronéw
ukrytych 'h'i potozenie w warstwie ukrytej 'pos'. Parametr 'c' okresla wielko$¢ parametrow losowych.

W przyktadzie inicjalizowane sg potgczenia od 10 wejscia do 1, 2, 3, 4 i 5 neuronu ukrytego.

Inicjalizacja do
realizacji funkcji
binarnej

void init_binfun(int v_in,int
pos=1)

nn.init_binfun(10,15)

Inicjalizacja realizujgca kodowanie binarne. Dotyczy tylko sieci aktywowanych za pomocg funkcji (tanhyp,
linear) i zmiennej zero-jedynkowej na wybranym wejsciu. 'v_in' to numer wejscia, 'pos' to pozycja
wykorzystanego neuronu w warstwie ukrytej (wykorzystany jest 1 neuron). Potgczenia sg ustawiane na
wartosci realizujgce kodowanie binarne (nie wymagaja uczenia).

W przyktadzie inicjalizuje sie potaczenia dla zmiennej nr 10, biegngce do neuronu 15.

Inicjalizacja do

void init_confun(int v_in,int

nn.init_confun(10,15)

Inicjalizacja realizujgca kodowanie ciggte funkcjg tanh4. Dotyczy tylko sieci aktywowanych za pomocg funkgji

realizacji kodowania pos=1) (tanhyp, linear) i zmiennej ciggtej na wybranym wejsciu. 'v_in' to numer wejscia, 'pos' to pozycja

ciagtego wykorzystanego neuronu w warstwie ukrytej (wykorzystany jest 1 neuron). Potgczenia sg ustawiane na
wartosci realizujgce kodowanie ciggte tanh (wymagane jest uczenia).
W przyktadzie inicjalizuje sie potaczenia dla zmiennej nr 10, biegnace do neuronu 15.

Liczba warstw int size_in() nn.size_in() Zwraca liczbe neurondéw wejsciowych

wejsciowych

Liczba warstw ukrytych |int size_hid() nn.size_hid() Zwraca liczbe neuronéw ukrytych

Funkcja aktywujaca int act_hid() nn.act_hid() Zwraca numer funkcji aktywujgcej warstwe ukrytg:

72

warstwy ukryte

0 — undefined

1 —logistic
2 —tanhyp
3 —linear

Funkcja aktywujaca
warstwe wyjsciowa

int act_out()

nn.act_out()

Zwraca numer funkcji aktywujacej warstwe wyjsciowa:

0 — undefined
1 —logistic

2 —tanhyp

3 —linear

Struktura sieci

void structure()

nn.structure()

Wyswietla strukture sieci:
- layer size —liczba neuronéw w warstwie wejsciowej, ukrytej i wyjsciowej
- activation — funkcje aktywacji (wejscie = ukryte, ukryte - wyjscie)

- parameters — liczbe niezerowych parametréw dla potaczen (wejscie = ukryte, bias = ukryte, ukryte >
wyjscie, bias = wyjscie)

Zmiana rozmiaru sieci

void resizec(int i_new, int
h_new)

nn.resizec(10,5)

Zmiana liczby wejs¢ z biezgcej na 'i_new' oraz liczby neurondow ukrytych z biezgcej na 'h_new'.
Zachowywane sg wartosci potaczen.

Dodanie neuronu w
warstwie ukrytej

void add_hid(int v_in,int
pos,double c=0.02)

nn.add_hid(8,5)

Dodanie neuronu w warstwie ukrytej. Potgczenie od wejscia 'v_in' do pozycji 'pos'. Parametr 'c' okresla
wielkos$¢ parametréw losowych.

Liczba uzywanych
neurondéw ukrytych

int used_hid()

nn.used_hid()

Zwraca liczbe uzywanych neuronéw w warstwie ukrytej. Neuron jest uzywany, jesli jest aktywowany przez
wczesniejszg warstwe.

Przesuniecie neuronow
w warstwie ukrytej

void shift_hid(int s)

nn.shift_hid(10)

Neurony w warstwie ukrytej sg przesuwane o 's' pozyciji.

taczenie dwdch sieci

void merge(neural_net
&n1l,neural_net
&n2,double c1=0.5,double
c2=0.5,double c0=0.0)

nn.merge(nl,n2)

taczenie sieci 'n1'i 'n2'. Otrzymana sie¢ daje wyniki bedace kombinacjg liniowa sktadowych:

value(x)=c1*n1.value(x)+c2*n2.value(x)+cO

73

Dotaczenie sieci do
istniejgcej sieci

void join(neural_net
&n1l,double c1=1.0)

nn.join(n1)

Dofaczenie sieci 'n1' do biezgce;j sieci. Po dotgczeniu biezgca sie¢ daje wyniki bedace kombinacjg liniowa
sieci przed dotaczeniem i sieci dotgczane;j:

value(x)=value(x)+c1*n1l.value(x)

Przemnozenie wag
drugiej warstwy przez
stafg

void w2b2_mul(double c)

nn.w2b2_mul(2.0)

Pofaczenia od warstwy ukrytej do wyjsciowej s3 mnozone przez statg 'c'.

Przyktadowo, sie¢ bedzie dawac¢ wyniki 2 razy wieksze.

Dodanie wartosci do
biasu drugiej warstwy

void b2_plus(double c)

nn.b2_plus(8.5)

Bias warstwy wyjsciowej jest zwiekszany o statg 'c'.

Przyktadowo, sie¢ bedzie dawac¢ wyniki zwiekszone o 8.5.

Wypetnienie
nieuzywanych potaczen
losowymi wartosciami

void refill(double c)

nn.refill(0.02)

Nieuzywane potaczenia sg inicjowane losowymi wartosciami, o ktérych wielkosci decyduje stata 'c'.

Dodanie jednego
potaczenia w pierwsze;j
warstwie

void rand_add_w1(double

c)

nn.rand_add_w1(0.02
)

Dodawane jest losowo potfaczenie w pierwszej warstwie

Dodanie jednego
potaczenia w drugiej
warstwie

void rand_add_w2(double

c)

nn.rand_add_w2(0.02
)

Dodawane jest losowo potaczenie w drugiej warstwie

Dodanie potaczenia w
obu warstwach

void
rand_add_w2w1(double c)

nn.rand_add_w2w1(0
.02)

Dodawane jest losowo potfaczenie w pierwszej i w drugiej warstwie

Usuniecie jednego
potfaczenia w pierwszej
warstwie

void rand_del_w1()

nn.rand_del_w1()

Usuwane jest losowo potgczenie w pierwszej warstwie

Usuniecie jednego
potaczenia w drugiej

void rand_del_w2()

nn.rand_del_w2()

Usuwane jest losowo potgczenie w drugiej warstwie

74

warstwie

Redukcja potaczen sieci

void reduction(double
c=0.02)

nn.reduction(0.01)

Potfaczenia sieci o wadze mniejszej co do wartosci bezwzglednej od 'c' sg zerowane

Aktywacja potaczen
nieaktywnych

void rand_fillo(double
c=0.02)

nn.rand_fill0(0.01)

Potgczenia o wartosci zero sg aktywowane wartosciami losowymi z zakresu [0,c]

Dopasowanie sieci do int fit(int iter=100,int nn.fit() Sie¢ jest dopasowywana do danych. Znajdowane jest minimum funkcji btedu dla préb bootstrapowych.
danych grad_desc=1,int Parametry funkgji:
lev_marg=1,int layer_1=1) - iter — liczba iteracji (domysInie 100)
- grad_desc — metoda gradientu sprzezonego (domysinie wtgczona)
- lev_marqg — metoda Levenberga-Marquardta (domysinie wtgczona)
- layer_1 — modyfikacja potaczen w pierwszej warstwie (domysinie wtgczona)
Uczenie sieci int learn(int nn.learn() Sie¢ jest uczona. W wyniku otrzymywany jest model o wtasciwosciach generalizujacych. Parametry funkcji:

min_iter=100,int
max_iter=1000,int
slow_steps=10,double
tol_err=1e-8,int
grad_desc=1,int
lev_marg=1,int
layer_1=1,int regul=1)

- min_iter — minimalna liczba iteracji (domysInie 100)

- max_iter — maksymalna liczba iteracji (domysInie 1000)

- slow_steps — liczba wolnych krokéw, po ktérych uczenie zostaje przerwane (domysinie 10)
- tol_err — doktadnos¢ uczenia (domysinie 1e-8)

- grad_desc — metoda gradientu sprzezonego (domysinie wtgczona)

- lev_marq — metoda Levenberga-Marquardta (domysinie witgczona)

- layer_1 — modyfikacja potgczen w pierwszej warstwie (domysInie wtgczona)

- regul — czy ma by¢ zastosowana regularyzacja (domyslnie tak)

75

Uczenie z rGwnoczesng
walidacjg

int learn_and_valid(int
min_iter=100,int
max_iter=1000,int
slow_steps=10,double
tol_err=1e-8,int
grad_desc=1,int
lev_marg=1,int layer_1=1)

nn.learn_and_valid()

Siec jest uczona i jednoczesnie walidowana. W wyniku otrzymywany jest model o wiasciwosciach
generalizujacych. Parametry funkcji sg analogiczne jak dla 'learn’, z tym ze nie ma parametru regularyzacji.
(Metoda niepolecana, poniewaz walidacja niedostatecznie zabezpiecza przed przeuczeniem.)

Resetowanie procesu
uczenia

void reset()

nn.reset()

Proces uczenia jest resetowany

Btad dopasowania

double error(int set=0)

nn.error(0)

Zwraca btad dopasowania dla zbioru o numerze 'set'

Korelacja wartosci double corr(int set=0) nn.corr(0) Zwraca wartos¢ korelacji wartosci obserwowanych i predykowanych dla zbioru o numerze 'set’
obserwowanych i

predykowanych

Skutecznosc¢ predykcji [double AR(int set=0) nn.AR(0) Zwraca wskaznik AR dla zbioru o numerze 'set’

Wartosc predykgji double value(const sparse |[nn.value(x) Zwraca wartos¢ predykcji sieci dla wejscia 'x'

&x)

Wartos¢ predykgji dla
wzorcow

matrix values(int set=0)

nn.values(0)

Zwraca zestaw wartosci predykcji sieci dla zbioru wzorcéw o numerze 'set

Zapis sieci

void save(Text name)

nn.save("siec.txt")

Zapis sieci do pliku o nazwie 'name’

Woczytanie sieci

void load(Text name)

nn.load("siec.txt")

Wczytanie sieci z pliku o nazwie 'name’

76

Weczytanie struktury
sieci

void load_structure(Text
name)

nn.load_structure("sie
c.txt")

Wczytanie struktury sieci z pliku o nazwie 'name’. Potgczenia sg inicjowane losowymi wartosciami.

Skasowanie sieci

void free()

nn.free()

Skasowanie sieci. Zwalniana jest pamie¢ przydzielona na ten obiekt.

77

1.11 WyKkres (gplot)

Deklaracja metody

Przyktad wywotania

Deklaracja obiektu

wykres

gplot()

gplot gp

Opis dziatania

Deklarowana jest zmienna typu wykres

Deklaracja obiektu
wykres i otworzenie
pliku wykresu do edycji

gplot(Text name,Text
path=Text())

gplot gp("sample")

Deklarowana jest zmienna typu wykres i otwierany jest plik o podanej nazwie do edycji (rysowania).
Opcjonalnie mozna podac $ciezke do katalogu, w ktérym wykres bedzie zapisany. Domysinie wybierany jest
biezacy katalog.

Po tej instrukcji mozna rozpocza¢ rysowanie.

Otworzenie pliku
wykresu do edycji

void open(Text name, Text
path=Text())

gp.open("sample2")

Otwierany jest plik wykresu.

Po tej instrukcji mozna rozpocza¢ rysowanie.

Zamkniecie pliku
wykresu

void close()

gp.close()

Zamykany jest plik wykresu.

Ta instrukcja konczy rysowanie.

Nazwa pliku wykresu

Text getname()

gp.getname()

Zwracana jest nazwa pliku wykresu

Sprawdzenie czy plik
jest otwarty do edycji

int isopen()

gp.isopen()

Zwracana jest wartos¢ 1 (true), jesli otwarto plik do edycji. Albo 0 (false) - w przeciwnym przypadku.

Wykres wielokrotny

void multiplot(int set=1,int
rows=1,int cols=2)

gp.multiplot(1,2,2)

Wtaczenie/wytaczenie trybu wielu wykreséw (‘set’ rowne 1 oznacza wtaczenie, a réwne 0 wytaczenie).
Mozna wybra¢ liczbe wykreséw w pionie (rows) i poziomie (cols).

W podanym przyktadzie wigczony zostaje tryb z czterema wykresami na jednej ilustracji (2x2).

Tytut

void title(Text t)

gp.title("Tytut

Wykres jest tytutowany

78

wykresu")

Styl

void style(Text t)

gp.style("fill solid
border -1")

Ustawienie stylu rysowania

Szerokos¢ stupka

void boxwidth(double d)

gp.boxwidth(5)

Ustawienie szerokosci stupkéw dla wykreséw, ktére zawierajg ten element.

Zakresy osi

void xrange(double
d1,double d2)

void yrange(double
d1,double d2)

void zrange(double
d1,double d2)

gp.xrange(-10,10)

Wybor zakresu dla osi X, YiZ

Tytuly osi

void xlabel(Text t)
void ylabel(Text t)

void zlabel(Text t)

gp.xlabel("0$ X")

Dodawanie podpiséw osi X, Y i Z

Legenda

void key(Text t)

gp.key("bot right")

Wiaczenie legendy i wybor jej potozenia

Prébkowanie

void samples(double d)

gp.samples(100)

Liczba prébek rysowanej funkcji

Prébkowanie ISO

void isosamples(double d)

gp.isosamples(10)

Gestos¢ siatki dla wykreséw 3D

Tryb parametryczny

void parametric(int set)

gp.parametric(1)

Witaczenie/wytgczenie rysowania funkcji parametrycznych (‘set’ rowne 1 oznacza wtaczenie, a réwne 0
wytaczenie)

Kat widzenia

void view(double
d1,double d2)

gp.view(65,55)

Wybor kata widzenia dla wykresow 3D

Pojedyncza etykieta

void label(int i, Text
t,double d1,double d2)

gp.label(1,"Jakis
napis”,200,100)

Dodaje dowolny napis w miejscu o wspoétrzednych (d1,d2). Parametr ‘i’ umozliwia numerowanie etykiet.

79

Obiekt

void object(Text t)

gp.object("polygon
from 10,10 to 20,20 fc
rgb 'orange'')

Umozliwia rysowanie obiektéw (prostokgtow, kot, elips, wielokgtow)

Typ znacznikdw osi

void xtics(Text t)
void ytics(Text t)

void ztics(Text t)

gp.xtics("rotate by -
90")

Umozliwia ustawienie sposobu wyswietlania znacznikow osi X, Yi Z.

Margines

void bmargin(double d)

gp.bmargin(10)

Ustawienie szerokosci dolnego marginesu

Reset

void reset()

gp.reset()

Zresetowanie wykresu. Przywracane sg wszystkie standardowe ustawienia.

Wykres danych z pliku
lub funkcji
zdefiniowanej napisem

void plot(Text datal,Text
modifl=Text(), Text
titlel=Text(), Text
stylel=Text(),...)

gp.plot("dane_wykres
u.txt","1:2","Zmienna
1","boxes",

"~ 113" "Zmienna
2","boxes")

gp.plot("2.5*sin(x)+x/
10.0","","Wykres
funkcji")

Rysowanie wykresu 2D ma podstawie danych z pliku tekstowego lub funkcji zdefiniowanej napisem.
Parametry:

- datal — nazwa pliku lub funkcja
- modifl — wybdr zakresu kolumn
- titlel — tytut krzywej

- stylel — styl rysowania krzywej

Mozna zdefiniowac do pieciu niezaleznych zrodet danych lub funkcji, posiadajgcych identyczny zestaw
parametrow jak opisane wyzej. Istnieje rowniez funkcja ‘splot’, majaca identyczne parametry, stuzgca do
rysowania powierzchni (wykres 3D).

W pierwszym przyktadzie rysunek korzysta z pliku ,dane_wykresu.txt”. Rysowany jest wykres pudetkowy dla
danych x z kolumny 1 i danych y z kolumny 2. Krzywa otrzymuje opis ,,Zmienna 1”. Rysowana jest takze
druga krzywa na podstawie danych z tego samego pliku (znak ~ oznacza powtdrzenie zrédta danych). Dane x

80

sg brane z kolumny 1, a dane y z kolumny 3. Krzywa otrzymuje opis ,,Zmienna 2”.

W drugim przyktadzie rysowana jest funkcja 2.5*sin(x)+x/10. Krzywa otrzymuje opis ,, Wykres funkcji”.

Wykres danych z tabeli |void plot(table tabl,Text gp.plot(tabela,"1:2","Z |Rysowanie wykresu 2D na podstawie danych z podanej tabeli.
modifl=Text(), Text mienna 1","boxes", Funkcionalnodé id e funkeii “olot” o q o d h 2 oliku tek
title1=Text(), Text it 11,30 17 mienna unkcjonalno$¢ identyczna jak funkcji ‘plot’ rysujacej na podstawie danych z pliku tekstowego.
stylel=Text(),...) 2","boxes")
‘Splot’ tworzy wykres 3D.
Wykres danych z void plot(matrix matl,Text |gp.plot(macierz,"1:2", |Rysowanie wykresu 2D na podstawie danych z podanej macierzy.
macierzy modifl=Text(), Text "Zmienna 1","boxes", Funkcionalnodé id ke funkeii ‘olot o d o h 2 oliku tek
title1=Text(), Text i~ 1930 17 mienna unkcjonalno$é identyczna jak funkcji ‘plot’ rysujgcej na podstawie danych z pliku tekstowego.
stylel=Text(),...) 2","boxes")
‘Splot’ tworzy wykres 3D.
Ustawienie void set(Text t) gp.set("key bot Umozliwa ustawienie dowolnego parametru wykresu
right\n")
Definicja void define(Text t) gp.define Umozliwia zdefiniowanie funkcji, wykorzystywanej na wykresie.
("min(a,b)=(a<=b)*a+(
a>b)*b")
Instrukcja void inst(Text t) gp.inst("set xdata Wywotanie dowolnej instrukcji gnuplot.

time")

81

Instrukcja otwarta

void instc(Text t)

gp.instc("plot

’

‘dane_wykresu.txt
1:2,")

Wywotanie dowolnej instrukcji gnuplot bez konczenia wiersza. Instrukcja otwarta umozliwia kontynuowanie
instrukcji gnuplot w nastepnej linii programu.

Odstep void sep(char c="-',int I=70) |[gp.sep(‘*’,30) Dodanie separatora do kodu skryptu
Koniec linii void endl(int n=1) gp.endl() Znak konca wiersza
Komentarz void comment(Text t) gp.comment("Jakis Komentarz skryptu gnuplot

komentarz")

Komentarz specjalny

void speccom(Text t,char

c='-',int [=70)

gp.speccom("Jakis
komentarz")

Komentarz skryptu wyrdzniony liniami separujgcymi

Pauza

void pause(int time=-1,Text

info="Hit return to
continue")

gp.pause()

Zatrzymuje skrypt gnuplot po wyswietleniu wykresu. Mozna wybraé czas (-1 oznacza oczekiwanie na
klikniecie myszka). W okienku informacyjnym wyswietlany jest komunikat zdefiniowany przez parametr
‘info’.

82

1.12 Raport HTML (html)

Metoda

Deklaracja obiektu
raport

Deklaracja metody

html(Text title="HL++
html", Text

description="Html created

by HL++", Text
keywords="HL++")

Przyktad wywotania Opis dziatania

html raport

Deklarowana jest obiekt typu raport HTML.

Ustawienie koloru tta

void background(Text color)

raport.backgroundcolo
r("blue")

Ustawiane jest tto strony.

Dodanie zaktadki

void tab(Text name)

raport.tab("Pierwsza
zaktadka")

Dodawanie nowej zaktadki do raportu. Raport musi mie¢ co najmniej jedng zaktadke.

Jezeli jest wiecej niz 1 zaktadka, to u gory strony automatycznie zostanie wygenerowany pasek nawigacji
miedzy zaktadkami.

Klasa wtasciwosci
tekstu

class text_properties
{
public:
int bold,
italic,
underline,
font_size; znakow
Text font_color,
font_face;

text_properties();

|3

text_properties
wlasciwosci_tekstu

Klasa definujgca wtasciwosci tekstu umieszczanego w raporcie za pomocg metody add_text. Kazdy
umieszczany tekst ma wtasne wtasciwosci, takie jak:

- pogrubienie (bold)

- kursywa (italic)

- podkreslenie (underline)

- wielkos¢ znakdw (font_size)
- kolor znakéw (font_color)

- rodzaj czcionki (font_face)

Po utworzeniu zmiennej text_properties te wiasciwosci przyjmujg wartosci domysine (zwykty tekst), ale

83

mozna je zmieniac jak w przyktadzie ponizej:
text_properties wlasciwosci_tekstu;
wlasciwosci_tekstu.bold=1;

wlasciwosci_tekstu.size=20;

Klasa wtasciwosci class table_properties table_properties Klasa definujgca wiasciwosci tabel umieszczanych w raporcie za pomoca metody add_table. Kazda
tabeli { wlasciwosci_tabeli umieszczana tabela ma wtasne wtasciwosci, takie jak:

public: .
_ - tytut (captition)
Text captition,

captition_align, - potozenie tytutu (captition_align)
width, o o
height, - szerokos$¢ w pikselach lub % (width)
align, - wysokosé w pikselach lub % (height)
bgcolor,

names color: - wyréwnanie wzgledem tekstu (align)

int col_names, - kolor tta (bgcolor)
row_names,

border, - kolor wiersza z nazwami kolumn (names_color)
cellpadding A i
o - wybor czy pokazywaé nazwy kolumn (col_names)
cellspacing;
- wybor czy pokazywaé nazwy wierszy (row_names)

table_properties();
2

- grubosc zewnetrznej ramki w pikselach (border)
- szeroko$¢ marginesdw poziomych i pionowych (cellpadding)
- szeroko$¢ odstepu miedzy sgsiednimi komarkami (cellspacing)

Po utworzeniu zmiennej table_properties te wtasciwosci przyjmujg wartosci domysine, ale mozna je
zmieniac jak w przyktadzie ponizej:

table_properties wlasciwosci_tabeli;

84

wlasciwosci_tabeli.captition="Tabela 1. Przyktadowa";

wlasciwosci_tabeli.row_names=0;

Dodanie rozdziatu

void chapter(Text
name,const text_properties
&p)

raport.chapter("Rozdz
iat 1",
wlasciwosci_tekstu)

Do raportu dodawany jest nowy rozdziat. Tytut rozdziatu ma podane wlasciwosci_tekstu.

Dodawanie rozdziatéw powoduje automatyczne utworzenie spisu tresci na pasku nawigacyjnym z lewej
strony raportu.

Dodanie tekstu

void htext(Text t,const
text_properties &p)

raport.htext("Jakis
napis",wlasciwosci_te
kstu)

Do raportu dodawany jest tekst o podanych wtasciwosciach.

Dodanie paragrafu

void paragraph(Text t,const
text_properties &p,Text
align="left")

raport.paragraph("Jaki
$
napis",wlasciwosci_te
kstu)

Do raportu dodawany jest tekst w paragrafie o podanych wtasciwosciach. Po kliknieciu w paragraf tekst
moze by¢ dynamicznie modyfikowany.

Dodanie ilustracji

void image(Text name, Text
dir="",Text align="Ileft",int
width=600,int height=400)

raport.image("obraze
k.jpg")

Do raportu dodawana jest ilustracja (obraz).

Dodanie odwotania

void href(Text name, Text
dir="",Text
description="reference",Te
xt image="")

raport.href("rozdzial2.
html")

Do raportu dodawane jest odwotanie wewnetrzne lub zewnetrzne.

Dodanie tabeli

void htable(const table
&tab,const
table_properties &p)

void htable(const table
&tab,const matrix
&conv,const

raport.htable(tabela,
wlasciwosci_tabeli)

raport.htable(tabela,c
(2,2,0,1),wlasciwosci_
tabeli)

Do raportu dodawana jest tabela o podanych witasciwosciach. Opcjonalny parametr 'conv' definiuje sposéb
prezentacji liczb. Jest to wektor o dtugosci odpowiadajgcej liczbie kolumn w tabeli. Kazda wartosci (liczba
catkowita) definiuje sposéb prezentacji w kolejnych kolumnach. Liczby dodanie wskazujg, ze liczby w
kolumnie majg by¢ wyswietlone jako liczby rzeczywiste o zadanej doktadnosci po przecinku. Wartos$é 0
wskazuje, ze majg by¢ wyswietlane liczby catkowite. Wartosci ujemne wskazujg, ze majg by¢ wyswietlane
wartosci procentowe o zadanej doktadnosci po przecinku.

85

table_properties &p)

Dodanie macierzy

void hmatrix(const matrix
&mat,const matrix
&conv,const
table_properties &p)

raport.hmatrix(macier
z,¢(2,3,6),wlasciwosci_
tabeli)

Do raportu dodawana jest macierz. Parametr 'conv' definiuje sposéb prezentacji liczb (tak samo jak dla
funkcji add_table).

Dodanie JavaScriptu

void js(Text name, Text
dir="",int width=600,int
height=400)

raport.js("wykres_gpl
ot.js")

Do raportu dodawany jest dowolny JavaScript. JavaScriptem moze by¢ wykres utworzony za
pomocg gplot, jezeli ustawi sie wtasciwosci pliku wynikowego: set terminal canvas.

Dodanie separatora

void endline(int n=1)

raport.endline()

Do raportu dodawane s3 linie odstepu.

Czyszczenie raportu

void clear()

raport.clear()

Obiekt raport jest czyszczony. Powstaje pusty raport.

Zapisanie raportu

void save(Text dir, Text
name)

raport.save("","raport

html")

Raport zapisywane jest na dysku w zadanej lokalizacji i pod okreslong nazwa.

86

1.13 Symulacje i kwantyle (simulation, quantiles)

Deklaracja metody Przyktad wywotania Opis dziatania

Deklaracja obiektu simulation() simulation s Tworzony jest pusty obiekt symulacje.

symulacje

Deklaracja obiektu z simulation(double simulation s(- Tworzony jest pusty obiekt symulacje. Zdefiniowane zostaja parametry histogramu: minimalna wartosé

parametrami hist_min,double 4.0,4.0,50) (hist_min), maksymalna wartos¢ (hist_max) i liczba przedziatéw (hist_num). Domyslnie jest 20 przedziatéw

histogramu hist_max,int his_num=20) histogramu.

Resetowanie symulacji |void reset() s.reset() Resetowanie symulacji. Obiekt symulacji jest przywracany do stanu poczgtkowego, gdy liczba obserwacji

wynosi 0.

Dodawanie obserwacji |void add(double e) s.add(normal_sample(|Do symulacji dodawana jest jedna obserwacja. W podanym przyktadzie jest to liczba z rozktadu normalnego

0.0,1.0,seed)) N(0,1). Funkcje losujgce liczby z réznych rozktadéw sg dostepne w biblitece prob.hpp. Punkt startowy

generatora losowego (tzw. ziarno) mozna zadeklarowac tak:
int seed[1]={10};

lub

int seed[1]={time(0)};

W pierwszym przypadku ziarno jest deterministyczne (réwne 10), w drugim przypadku zalezy od czasu
uruchomienia programu.

Woczytanie obiektu void load(Text name) s.load("symul.dat") Obiekt symulacje jest wczytywany z pliku o podanej nazwie.

Zapisanie obiektu void save(Text name) s.save("symul.dat") Obiekt symulacje jest zapisywany do pliku o podanej nazwie.

Kumulowanie symulacji |void operator +=(const s+=52; Symulacje z dwdéch obiektdw sg sumowane w pierwszym z nich. W podanym przyktadzie do obiektu 's' s
simulation &s) dodawane wszystkie symulacje zgromadzone w obiekcie 's2'.

87

Liczba symulacji long length() s.length() Zwracana jest liczna wykonanych symulacji.

Najmniejsza wartos¢ double min() s.min() Zwracana jest wartos¢ najmniejsza.

Najwieksza wartosc double max() s.max() Zwracana jest wartos¢ najwieksza.

Zakres double range() s.range() Zwracany jest zakres wartosci (tj. maksimum - minimum).
Suma double sum() s.sum() Zwracana jest suma wartosci.

Srednia arytmetyczna |double mean() s.mean() Zwracana jest Srednia arytmetyczna.

Srednia geometryczna |double gmean() s.gmean() Zwracana jest $rednia geometryczna wartosci dodatnich.
Srednia harmoniczna double hmean() s.hmean() Zwracana jest $rednia harmoniczna wartosci réznych od 0.
Dominanta double mode() s.mode() Zwracana jest wartos$¢ najczestsza.

Wariancja double var() s.var() Zwracana jest variancja rozktadu.

Odchylenie double stdev() s.stdev() Zwracane jest odchylenie standardowe.

standardowe

Skosnos¢ double skewness() s.skewness() Zwracana jest sko$nosé.

Kurtoza double kurtosis() s.kurtosis() Zwracana jest kurtoza.

Histogram matrix hist() s.hist() Zwracana jest macierz z histogramem rozktadu.

Obliczanie kwantyli:

Deklaracja metody Przyktad wywotania |Opis dziatania

88

Deklaracja obiektu
kwantyle

quantiles(double p=0.5)

quantiles g(0.3)

Deklarowana jest obiekt kwantyle. Obliczany bedzie kwantyl 'p' (domysinie kwantyl 0.5, czyli mediana).

W podanym przyktadzie obiekt bedzie obliczat kwantyl 0.3.

Resetowanie obiektu

void reset(double p)

g.reset(0.4)

Resetowanie symulacji stuzacych do wyliczenia kwantyla. Obiekt 'kwantyle' jest przywracany do stanu
poczatkowego, gdy liczba obserwacji wynosi 0. Wymagane jest podanie, jaki kwantyl bedzie nastepnie
obliczany (parametr 'p').

Dodawanie obserwacji

void add(double e)

g.add(normal_sample(
0.0,1.0,seed))

Do symulacji dodawana jest jedna obserwacja. W podanym przyktadzie jest to liczba z rozktadu normalnego
N(0,1). Wiecej informacji patrz: funkcja add w obiekcie ,,simulation”.

Wynik

double result()

g.result()

Obliczany jest kwantyl rozktadu.

Dystrybuanta

double cdf(double x)

q.cdf(0.0)

Obliczana jest wartos¢ dystrybuanty w zadanym punkcie potozonym w poblizu wyznaczonego kwantyla.
Obiekt kwantyle nie gromadzi wszystkich obserwacji, a tylko te w poblizu szukanego wyniku. Jezeli wartosc¢ x
bedzie odlegta od wyniku, to pojawi sie komunikat ostrzegawczy, ze wartosci dystrybuanty nie mozna
wyznaczy¢. Ta funkcja moze stuzy¢ np. do sprawdzenia, czy wynik otrzymany funkcja result() jest prawidtowy:

int seed[1]={1};

quantiles q(0.5);
for (long n=1; n<=1000000; n++) g.add(normal_sample(0.0,1.0,seed));

double mediana=q.result();
cout<<"mediana="<<mediana<<end|;
cout<<"cdf(mediana)="<<q.cdf(mediana)<<endl;

Oczekiwany wynik dziatania programu przy duzej liczbie symulacji to:

mediana=0.0
cdf(mediana)=0.5

Funkcja jest wykorzystywana przez obiekt ,,quantiles2”, kumulujacy obiekty ,, quantiles” (patrz ponizej).

Woczytanie obiektu

void load(Text name)

g.load("kwantyll.dat")

Obiekt kwantyle jest wczytywany z pliku o podanej nazwie.

89

Zapisanie obiektu

void save(Text name)

g.save("kwantyll.dat")

Obiekt kwantyle jest zapisywany do pliku o podanej nazwie.

Deklaracja obiektu
sumujacego zestawy
symulacji

quantiles2(int
max_size=10)

quantiles2 qq(2)

Tworzony jest obiekt, w ktérym mozna zsumowa¢, wiele obiektow kwantylowych (typu quantiles). Parametr
max_size okresla, ile maksymalnie obiektow bedzie zsumowanych.

Resetowanie obiektu void reset(int max_size=10) |qqg.reset() Resetowanie obiektu. Obiekt 'kwantyle2' jest przywracany do stanu poczgtkowego, gdy nie zawiera,
zadnych danych. Mozna zmieni¢ maksymalng liczbe obiektéw sktadowych (parametr 'max_size').

Kumulowanie symulacji |void operator +=(const qg+=q Symulacje z obiektéw , kwantyle” s3 sumowane w obiekcie ,kwantyle2”. W podanym przyktadzie do obiektu

quantiles &q) 'qq' s3 dodawane wszystkie symulacje zgromadzone w obiekcie 'q'.

Wynik double result() qqg.result() Obliczany jest kwantyl rozktadu.

Dystrybuanta double cdf(double x) qq.cdf() Obliczana jest wartos$¢ dystrybuanty w zadanym punkcie potozonym w poblizu wyznaczonego kwantyla.
Jezeli wartos¢ x bedzie odlegta od wyniku, to pojawi sie komunikat ostrzegawczy, ze wartosci dystrybuanty
nie mozna wyznaczyc.

Liczba wszystkich long simulations_all() gg.simulation_all() Liczba wszystkich symulacji w kumulowanych obiektach kwantylowych.

symulacji

Liczba uzytych
symulacji

long simulations_used()

gqg.simulation_used()

Liczba symulacji w kumulowanych obiektach kwantylowych uzytych do obliczania wynikéw (najczesciej
réwna liczbie wszystkich symulacji).

90

1.14 Jezyk R (rrun, rcppconv)

Deklaracja metody Przyktad wywotania Opis dziatania

Domyslne srodowisko R |Rinside RE RE Aby wygodnie korzystac¢ z R, w gtéwnym pliku projektu (np. main.cpp) nalezy zadeklrowac zmienng RE poza
programem gtéwnym. Zmienna RE bedzie dostepna we wszystkich plikach projektu. Sposéb deklaracji:
Rinside RE;
int main()
{
// kod programu
}
Tekst typedef Rcpp::String RText |RText t Typ tekst w Rcpp. Zmienna tego typu moze by¢ przekazana do srodowiska R.
Data typedef Rcpp::Date RDate |RDate d Typ data w Rcpp. Zmienna tego typu moze byé przekazana do $rodowiska R.
Macierz typedef RMatrix m Typ macierz w Rcpp. Zmienna tego typu moze by¢ przekazana do srodowiska R.
Rcpp::NumericMatrix
RMatrix
Wektor typedef RVector v Typ wektor w Rcpp. Zmienna tego typu moze by¢ przekazana do srodowiska R.
Recpp::NumericVector
RVector
Tabela typedef Rcpp::DataFrame RTable t Typ tabela w Rcpp. Zmienna tego typu moze by¢ przekazana do srodowiska R.
RTable
Tabele w R nazywajg sie data.frame.
Typ dowolny typedef Rinside::Proxy - Typ dowolny. Funkcja R zwraca wynik typu RProxy, ktory jest nastepnie konkretyzowany. Patrz pomoc do
funkcji ,RProxy eval(Text)”.

91

RProxy

Na tekst C++ Text ctext(const RText &) ctext(tekst_R) Konwertuje zmienng tekstowa z R na zmienng tekstowg C++.
Na tekst R RText rtext(const Text &) rtext(tekst_C) Konwertuje zmienng tekstowg z C++ na zmienng tekstowg R.
Na date C++ date cdate(const RDate &) |cdate(data_R) Konwertuje zmienng data z R na zmienng data C++.
Na date R RDate rdate(const date &) |rdate(data_C) Konwertuje zmienng data z C++ na zmienng data R.

Na macierz C++

matrix cmatrix(const
RMatrix &)

cmatrix(macierz_R)

Konwertuje macierz z R na macierz C++.

Na macierzR

RMatrix rmatrix(const
matrix &)

rmatrix(macierz_C)

Konwertuje macierz z C++ na macierz R.

Na wektor C++

matrix cvector(const
RVector &)

cvector(wektor_R)

Konwertuje wektor z R na wektor C++.

Na wektor R RVector rvector(const rvector(wektor_C) Konwertuje wektor z C++ na wektor R.
matrix &)

Na tabele C++ table ctable(const RTable ctable(tabela_R) Konwertuje tabele z R (data.frame) na tabele C++.
&)

Na tabele R RTable rtable(const table rtable(tabela_C) Konwertuje tabele z C++ na tabele R (data.frame).

&)

Przesytanie zmiennych
doR

void var(string,int)

void var(string,double)

void var(string,const Text
&)

var("n",n)
var("x",x)
var("nazwa",nazwa)

var("datal",datal)

Za pomoca funkcji var mozna przesta¢ zmienng z C++ do srodowiska R. Nazwa zmiennej w R bedzie taka jak
pierwszy argument funkc;ji (string), a wartosc taka jak drugi argument.

W podanych przyktadach nazwy zmiennych w R s3 takie same jak w C++, jednak nie jest to wymagane. To
zZnaczy mozna napisac np.:

var("x",y)

92

void var(string,const date
&)

void var(string,const matrix
&)

void var(string,const table
&)

var("A",A)

var("tab",tab)

Uzycie zmienne w R

use(name)

use(x)

Zmienna C++ name staje sie widoczna w R pod tg samg nazwa.

Deklarowanie zmiennej
wR

let(namel,name2)

let(x,y)

W R powstaje zmienna namel, odpowiadajgca zmiennej C++ name2.

Uruchomienie kodu

void evalQ(Text)

evalQ("print(2)")

Funkcja uruchamia podany kod R. Dziatania sg wykonywane w srodowisku RE.

Uruchomienie kodu
zwracajacego wynik

RProxy eval(Text)

RVector
wektorR=eval("rep(1,
10)")

Funkcja uruchamia podany kod R. Dziatania sg wykonywane w srodowisku RE.

Wynik moze by¢ typu: int, double, RText, RDate, RMatrix, RVector lub RTable.

Uruchomienie kodu z
pliku

void sourceQ(Text)

void sourceQ(RInside
&,Text)

sourceQ("funkcja.R")

sourceQ(R1,"funkcja.R
Il)

Funkcja uruchamia kod R z pliku o podanej nazwie. DomyslInie dziatania s3 wykonywane w srodowisku RE,
ale mogg by¢ wykonywane w innych instancjach tego srodowiska (jak w drugim przyktadzie).

Uruchomienie kodu
zwracajacego wynik z
pliku

RProxy source(Text)

RProxy source(RInside
&,Text)

RMatrix
macierzR=source("fun
kcja2.R")

RTable
tabelaR=source(R1,"fu
nkcja3.R")

Funkcja uruchamia kod R z pliku o podanej nazwie. Domyslnie dziatania sg wykonywane w srodowisku RE,
ale mogg by¢ wykonywane w innych instancjach tego Srodowiska (jak w drugim przyktadzie).

Wynik moze by¢ typu: int, double, RText, RDate, RMatrix, RVector lub RTable.

93

Makra uruchamiajace

proc(name)
fun(name)

run(name)

proc(print(2))
fun(rep(1,10))

run(funkcja2)

Makra pozwalajgce uruchamiac kod z pominieciem cudzystowdw i rozszerzen pliku (bardziej czytelne).

94

	1 Spis funkcji HL++
	1.1 Funkcje elementarne (elfun)
	1.2 Tekst (text)
	1.3 Data (date)
	1.4 Wektor (vector)
	1.5 Dane (data)
	1.5.1 Deklaracja zmiennej
	1.5.2 Wymiary obiektu
	1.5.3 Dostęp do obiektu
	1.5.4 Wyszukiwanie
	1.5.5 Zmiana rozmiaru i kształtu
	1.5.6 Sprawdzanie zawartości
	1.5.7 Tworzenie wektorów
	1.5.8 Zmiana zawartości
	1.5.9 Kopiowanie
	1.5.10 Wybieranie i wstawianie
	1.5.11 Łączenie
	1.5.12 Operacje zmiany orientacji
	1.5.13 Zamiana wierszy, kolumn
	1.5.14 Pozostawianie wybranych wierszy, kolumn
	1.5.15 Operatory
	1.5.16 Sortowanie
	1.5.17 Operacje na zbiorach
	1.5.18 Operacje plikowe
	1.5.19 Wyświetlanie, kasowanie

	1.6 Macierz (matrix)
	1.6.1 Deklaracja zmiennej
	1.6.2 Konwersja
	1.6.3 Tworzenie
	1.6.4 Wypełnianie
	1.6.5 Podstawowe operacje
	1.6.6 Operacje statystyczne
	1.6.7 Ogólne podsumowanie
	1.6.8 Operacje dwuargumentowe
	1.6.9 Operatory
	1.6.10 Algebra liniowa
	1.6.11 Regresja liniowa i inne metody numeryczne
	1.6.12 Operacje na plikach binarnych

	1.7 Tabela (table)
	1.7.1 Deklaracja zmiennej
	1.7.2 Konwersja
	1.7.3 Wybór etykiet
	1.7.4 Tabela testowa
	1.7.5 Operacje wyboru i faktorowe
	1.7.6 Sortowanie
	1.7.7 Tworzenie bazy do modelowania

	1.8 Macierz rzadka (sparse)
	1.9 Metody numeryczne (numproc)
	1.10 Sieć neuronowa (neural_net)
	1.11 Wykres (gplot)
	1.12 Raport HTML (html)
	1.13 Symulacje i kwantyle (simulation, quantiles)
	1.14 Język R (rrun, rcppconv)

